221

CHAPTER

The Microsoft Windows XP operating system is a 32/64-bit preemptive
multitasking operating system for AMD Ké6/K7, Intel 1A32/1A64, and later
microprocessors. The successor to Windows NT and Windows 2000, Windows
XP is also intended to replace the Windows 95/98 operating system. Key
goals for the system are security, reliability, ease of use, Windows and POSIX
application compatibility, high performance, extensibility, portability, and
international support. In this chapter, we discuss the key goals of Windows
X, the layered architecture of the system that makes it so easy to use, the file
system, the networking features, and the programming interface.

In the mid-1980s, Microsoft and IBM cooperated to develop the 05/2 operating
system, which was written in assembly language for single-processor Intel
80286 systems. In 1988, Microsoft decided to make a fresh start and to develop
a “new technology™ (or NT) portable operating system that supported both the
05/2 and POSIX application-programming interfaces (APfs). In October 1988,
Dave Cutler, the architect of the DEC VAX/VMS operating system, was hired
and given the charter of building this new operating system.

Originally, the team planned for NT to use the 08/2 APl as its native
environment, but during development, NT was changed to use the 32-bit
Windows API {or Win32 APi), reflecting the popularity of Windows 3.0. The first
versions of NT were Windows NT 3.1 and Windows NT 3.1 Advanced Server.
(At that time, 16-bit Windows was at version 3.1.) Windows NT version 4.0
adopted the Windows 95 user interface and incorporated Internet web-server
and web-browser software. In addition, user-interface routines and all graphics
code were moved into the kernel to improve performance, with the side effect of
decreased system reliability. Although previous versions of NT had been ported
to other microprocessor architectures, the Windows 2000 version, released in
February 2000, discontinued support for other than Intel (and compatible)
processors due to marketplace factors. Windows 2000 incorporated significant
changes over Windows NT. It added Active Directory (an X.500-based directory
service), better networking and laptop support, support for plug-and-play

759

760

22.2

Chapter 22

devices, a distributed file system, and support for more processors and more
Memory.

In October 2001, Windows XP was released as both an update to the
Windows 2000 desktop operating system and a replacement for Windows
95/98. In 2002, the server versions of Windows XP became available (called
Windows Net Server). Windows XP updates the graphical user interface
(GUL) with a visual design that takes advantage of more recent hardware
advances and many new ease-of-use features. Numerous features have been
added to automatically repair problems in applications and the operating
system itself. Windows XP provides better networking and device experience
(including zero-configuration wireless, instant messaging, streaming media,
and digital photography /video), dramatic performance improvements both
for the desktop and large multiprocessors, and better reliability and security
than even Windows 2000.

Windows XP uses a client-server architecture (like Mach) to implement
multiple operating-system personalities, such as Win32 API and POSIX, with
user-level processes called subsystems, The subsystem architecture allows
enhancemeits to be made to one operating-system personality without affect-
ing the application compatibility of any others.

Windows XP is a multiuser operating system, supporting simuitaneous
access through distributed services or through multiple instances of the
graphical user interface via the Windows terminal server. The server versions
of Windows XP support simultaneous terminal server sessions from Windows
desktop systems. The desktop versions of terminal server multiplex the
keyboard, mouse, and monitor between virtual terminal sessions for each
logged-on user. This feature, called fast user switching, allows users to preempt
each other at the console of a PC without having to log off and onto the system.

Windows XP is the first version of Windows to ship a 64-bit version. The
native NT file system (NTFS) and many of the Win32 APIs have always used 6d-
bit integers where appropriate—so the major extension to 64-bit in Windows
XP is support for large addresses.

There are two desktop versions of Windows XP. Windows XP Professional is
the premium desktop system for power users at work and at home. For home
users migrating from Windows 95/98, Windows XP Personal provides the
reliability and ease of use of Windows XP, but lacks the more advanced features
needed to work seamlessly with Active Directory or run POSIX applications.

The members of the Windows Net Server family use the same core
components as the desktop versions but add a range of features needed for
uses such as webserver farms, print/file servers, clustered systems, and iarge
datacenter machines. The large datacenter machines can have up to 64 G5 of
memory and 32 processors on [A32 systems and 128 GB and 64 processors on
1A64 systems.

Microsoft's design goals for Windows XI’ include security, reliability, Win-
dows and POSIX application compatibility, high performance, extensibility,
portability, and inte}?ﬁonal support.

-

22.2 : 761

22.2.1 Security

Windows XP security goals required more than just adherence to the design
standards that enabled Windows NT 4.0 to receive a C-2 security classification
from the U.S. govermment (which signifies a moderate level of protection from
defective software and malicious attacks). Extensive code review and testing
were combined with sophisticated automatic analysis tools to identify and
investigate potential defects that might represent security vulnerabilities.

22.2.2 Reliability

Windows 2000 was the most reliable, stable operating system Microsoft had
ever shipped to that point. Much of this reliability came from maturity in the
source code, extensive stress testing of the system, and automatic detection
of many serious errors in drivers. The reliability requirements for Windows
XP were even more stringent. Microsoft used extensive manual and automatic
code review to identify over 63,000 lines in the source files that might contain
issues not detected by testing and then set about reviewing each area to verify
that the code was indeed correct.

Windows XP extends driver verification to catch more subtle bugs,
improves the facilities for catching programming errors in user-level code,
and subjects third-party applications, drivers, and devices to a rigorous certi-
fication process. Furthermore, Windows XP adds new facilities for monitoring
the health of the PC, including downloading fixes for problems before they
are encountered by users. The perceived reliability of Windows XP was also
improved by making the graphical user interface easter to use through better
visual design, simpler menus, and measured improvements in the ease with
which users can discover how to perform commaon tasks.

22.2.3 Windows and POSIX Application Compatibility

Windows XP is not only an update of Windows 2000; it is a replacement
for Windows 95/98. Windows 2000 focused primarily on compatibility for
business applications. The requirements for Windows XP include a much
higher compatibility with consumer applications that tun on Windows 95/98.
Application compatibility is difficult to achieve because each application
checks for a particular version of Windows, may have some dependence on the
quirks of the implementation of APls, may have latent application bugs that
were masked in the previous system, and so forth.

Windows XP introduces a compatibility layer that falls between appli-
cations and the Win32 APIs. This layer makes Windows XP look (almost)
bug-for-bug compatible with previous versions of Windows. Windows XP,
like earlier NT releases, maintains support for running many 16-bit applica-
tions using a thunking, or conversion, layer that translates 16-bit API calls into
equivalent 32-bit calls. Similarly, the 64-bit version of Windows XP provides
a thunking layer that translates 32-bit API calls into native 64-bit calls. POSIX
support in Windows XP is much jmproved. A new POSIX subsystem called
Interix is now available. Most available UNiX-compatible software compiles
and runs under Interix without maodification.

762

Chapter 22

22.2.4 High Performance

Windows XP is designed to provide high performance on desktop systems
(which are largely constrained by 1/0 performance), server systems (where
the CPU is often the bottleneck), and large multithreaded and multiprocessor
environments (where locking and cache-line management are key to scalabil-
ity). High performance has been an increasingly important goal for Windows
XP. Windows 2000 with SQL 2000 on Compaq hardware achieved top TPC-C
numbers at the time it shipped.

To satisty performance requirements, NT uses a variety of techniques, such
asasynchronous /0, optimized protocols fornetworks {for example, optimistic
locking of distributed data, batching of requests), kernel-based graphics,
and sophisticated caching of file-systern data. The memory-management and
synchronization algorithms are designed with an awareness of the performance
considerations related to cache lines and multiprocessors.

Windows XP has further improved performance by reducing the code-path
length in critical functions, using better algorithms and per-processor data
structures, using memory coloring for NUMA (non-uniform MEemaory access)
machines, and implementing more scalable locking protocols, such as gueued
spinlocks. The new locking protocols help reduce systerm bus cycles and include
lock-free lists and queues, use of atomic read-modify—write operations (like
interlocked increment), and other advanced locking techniques.

The subsystems that constitute Windows XP communicate with one
another efficiently by a local procedure call (LPC) facility that provides high-
performance message passing. Except while executing in the kernel dispatcher,
threads in the subsystems of Windows XP can be preempted by higher-priority
threads. Thus, the system responds quickly to external events. In addition,
Windows XP is designed for symmetrical multiprocessing; on a multiprocessor
computer, several threads can run at the same time.

22.2 5 Extensibility

Extensibility refers to the capacity of an operating system to keep up with
advances in computing technology. So that changes over time are facilitated,
the developers implemented Windows XP using a layered architecture. The
Windows XP executive runs in kernel or protected mode and provides the basic
system services. On top of the executive, several server subsystems operate
in user mode. Among them are environmental subsystems that emulate
different operating systems. Thus, programs written for MS-DOS, Microsoft
Windows, and POSIX all run on Windows XP in the appropriate environment.
(See Section 22.4 for more information on environmental subsystems.) Because
of the modular structure, additional environmental subsystems can be added
without affecting the executive. In addition, Windows XP uses loadable drivers
in the I/0 system, so new file systems, new kinds of 10 devices, and new kinds
of networking can be added while the system is running. Windows XP uses a
client-server model like the Mach operating system and supports distributed
processing by remote procedure calls (RPCs) as defined by the Open Software
Foundation.

223 - 763

22.2.6 Portability

An operating system is portable if it can be moved from one hardware
architecture to another with relatively few changes. Windows XP is designed
to be portable. As is true of the UNIX operating system, the majority of the
system is written in C and C++. Most processor-dependent code is isolated
in a dynamic link library (DLL) called the hardware-abstraction layer (HAL}).
A DLL is a file that is mapped into a process’s address space such that any
functions in the DLL appear to be part of the process. The upper layers of the
Windows XP kernel depend on the HAL interfaces rather than on the underlying
hardware, bolstering Windows XP portability. The HAL manipulates hardware
directly, isolating the rest of Windows XP from hardware differences among
the platforms on which it runs.

Although for market reasons Windows 2000 shipped only on Intel 1A32-
compatible platforms, it was also tested on 1432 and DEC Alpha platforms until
just prior to release to ensure portability. Windows XP runs on 1A32-compatible
and 1464 processors. Microsoft recognizes the importance of multiplatform
development and testing, since, as a practical matter, maintaining portability
is a matter of use 7 or lose it.

22.2.7 International Support

Windows XP is also designed for international and multinational use. It pro-
vides support for different locales via the national-language-support (NLS)
APL. The NLS API provides specialized routines to format dates, time, and
money in accordance with various national customs. String comparisons are
specialized to account for varying character sets. UNICODE is Windows XP’s
native character code. Windows XP supports ANS] characters by converting
them to UNICODE characters before manipulating them (8-bit to 16-bit con-
version). System text strings are kept in resource files that can be replaced
to localize the system for different languages. Multiple locales can be used
concurrently, which is important to multilingual individuals and businesses.

22.3 LB R LT GEESY By i

The architecture of Windows XP-is a layered system of modules, as shown in
Figure 22.1. The main layers are the HAL, the kernel, and the executive, all
of which run in protected mode, and a collection of subsystems and services
that run in user mode. The user-mode subsystems fall into two categories:
the environmental subsystems, which emulate different operating systems,
and the protection subsystems, which provide security functions. One of
the chief advantages of this type of architecture is that interactions between
modules are kept simple. The remainder of this section describes these layers
and subsystems.

22.3.1 Hardware-Abstraction Layer

The HAL is the layer of software that hides hardware differences from upper
levels of the operating system, to help make Windows XP portable. The HAL

764 Chapter 22

logon | 05/2 Wini6 winzz | [MS-DOS POSIX |
process applications apptications applicationg applications applications |
[}
security . Q%2 Wini8 | IMS-DOS
subsystam subsystem VDM VDM

authentication
package

[security account

manager database

Win32
subsystem

user mode

l execulive
O manager - local
| object security process plug and | virtual roceurE
| referance play = | memory | ¥ window
Manager | onitor | M2"29%" | magager manager call
0! it] facility manager
ar: : ., r .
| network { kerne graphic
| orivers) I device
i) drivers
| 7 ‘ hardware abstraction jayer F
hardwara

Figure 22.1 Windows XP block diagram.

exports a virtual machine interface that is used by the kernel dispatcher, the
executive, and the device drivers. One advantage of this approach is that only
a single version of each device driver is required —it runs on all hardware
platforms without porting the driver code. The HAL also provides support
for symmetric multiprocessing. Device drivers map devices and access them
directly, but the administrative details of mapping memory, configuring 1/0
buses, setting up DMA, and coping with motherboard-specific facilities are all
provided by the HAL interfaces.

22.3.2 Kernel

The kernel of Windows X provides the foundation for the executive and
the subsystems. The kernel remains in memory, and its execution is never
preempted. It has four main responsibilities: thread scheduling, interrupt and
exception handling, low-level processor synchronization, and recovery after a
power failure.

The kernel is object oriented. An object fype in Windows 2000 is a system-
defined data type that has a set of attributes (data values) and a set of methods
(for example, functions or operations). An object is an instance of an object type.
The kernel performs its job by using a set of kernel objects whose attributes
store the kernel data and whose methods perform the kernel activities.

24,3 o TR I L=

22.3.2.1 Kernel Dispatcher

The kernel dispatcher provides the foundation for the executive and the sub-
systems. Most of the dispatcher is never paged out of memory, and its execution
is never preempted. Its main responsibilities are thread scheduling, implemen-
tation of synchronization primitives, timer management, software interrupts
(asynchronous and deferred procedure calls), and exception dispatching.

22.3.2.2 Threads and Scheduling

Like many other modern operating systems, Windows XP uses processes and
threads for executable code. The process has a virtual memory address space
and information used to initialize each thread, such as a base priority and
an affinity for either one or more processors. Each process has one or more
threads, each of#which is an executable unit dispatched by the kemel. Each
thread has its own scheduling state, including actual priority, processor affinity,
and CPU-usage information.)

The six possible thread states are ready, standby, running, waiting, tran-
sition, and terminated. Ready indicates that the thread is waiting to run. The
highest-priority ready thread is moved to the standby state, which means
it is the next thread to run. In a multiprocessor system, each process keeps
one thread in a standby state. A thread is running when it is executing on
a processor. It runs until it is preempted by a higher-priority thread, until it
terminates, until its allotted execution time {quantum} ends, or until it blocks
on a dispatcher object, such as an event signaling 1/0 completion. A thread is
in the waiting state when it is waiting for a dispatcher object to be signaled. A
new thread is in the transition state while it waits for resources necessary for
execution. A thread enters the terminated state when it finishes execution.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes: variable class and
real-time class. The variable class contains threads having priorities from 0 to
15, and the real-time class contains threads with priorities ranging from 16
to 31. The dispatcher uses a queue for each scheduling priority and traverses
the set of queues from highest to lowest until it finds a thread that is ready
to run. If a thread has a particular processor affinity but that processor is not
available, the dispatcher skips past it and continues looki. g fora ready thread
that is willing to run on the available processor. If no ready thread is found,
the dispatcher executes a special thread called the idle thread.
~ When a thread’s time quantum ruiss out, the clock interrupt queues a
quantum-end deferred procedure call (DPC) to g processor in order to
reschedule the processor. If the preempted thread™is in the variable-priority
class, its priority is lowered. The priority is never lowered below the base
priority. Lowering the thread’s priority tends to limit the CPU consumption of
compute-bound threads. When a variable-priority thread is released from a
wait operation, the dispatcher boosts the priority. The amount of the boost
depends on the device for which the thread was waiting; for example, a
thread waiting for keyboard 1/0 would get a large priority increase, whereas
a thread waiting for a disk operation would get a moderate one. This strategy
tends to give good response times to interactive threads using a mouse and
windows. It also enables 1/0-bound threads to keep the 1/0 devices busy while
permitting compute-bound threads to use spare CPU cycles in the background.

766

Chapter 22

This strategy is used by several time-sharing operating systems, including
UNIX. In addition, the thread associated with the user’s active GUI window
receives a priority boost to enhance its response time.

Scheduling occurs when a thread enters the ready or wait state, when
a thread terminates, or when an application changes a thread’s priority or
processor affinity. If a higher-priority real-time thread becomes ready while
a lower-priority thread is running, the lewer-priority thread is preempted.
This preemption gives a real-time thread preferential access to the CPU when
the thread needs such access. Windows XP is not a hard real-time operating
system, however, because it does not guarantee that a real-time thread will
start to execate within a particular time limit.

22.3.2.3 Implementation of Synchronization Primitives

Key operating-system data structures are managed as objects using common
facitities for allocation, reference counting, and security. Dispatcher objects
control dispatching and synchronization in the system. Examples of ihese
objects are events, mutants, mutexes, semaphores, processes, threads, and
timers. The event object is used to record an event occurrence and to
synchronize the latter with some action. Notification events signal all waiting
threads, and synchronization events signal a single waiting thread. The mutant
provides kernel-mode or user-mode mutual exclusion with the notion of
ownership. The mutex, available only in kerpel mode, provides deadlock-frec
mutual exclusion. A semaphore object acts as a counter or gate to control the
number of threads that access a resource. The thread object is the entity that
is scheduled by the kernel dispatcher and is associated with a process object,
which encapsulates a virtual address space. Timer objects are used to keep
track of time and to signal timeouts when operations take too long and need
to be interrupted or when a periodic activity needs to be scheduled.

Many of the dispatcher objects are accessed from user mode via an open
operation that returns a handle. The user-mode code polls and/or waits on
handles to synchronize with other threads as well as the operating system (see
Section 22.7.1).)

22.3.24 Software Interrupts: Asynchronous and Delerred Procedure Calls

The dispatcher implements two types of software mterrupts: asynchronous
procedure calls and deferred procedure calls. Asynchronous procedure calls
{APCs) break into an executing thread and call a procedure. APCs are used to
begin execution of a new thread, terminate processes, and deliver notification
that an asynchronous (1/0) has completed. AI'Cs are queued to specific threads
and allow the system to execute both system and user code within a process’s
context.

Deferred procedure calls (DPCs) are used to postpone interrupt processing.
After handling all blocked device-interrupt processes, the interrupt service
routme (ISR} schedules the remaining processing by queuing a DPC. The
dispatcher schedules software interrupts at a lower priority than the device
interrupts so that DPCs do not block other JSRs. In addition to deferring device-
interrupt processing, the dispatcher uses DPCs to process timer expirations and
to preempt thread execution at the end of the scheduling quantum.

22.3 767

Execution of DPCs prevents threads from being scheduled on the current
processor and also keeps APCs from signaling the completion of 1/0. This is
done so that DI)C routines do not take an extended amount of time to com plete.
As an alternative, the dispatcher maintains a pool of worker threads. ISRs and
OPCs queue work items to the worker threads. DPC routines are restricted so
that they cannot take page faults, call system services, or take any other action
that might possibly result in an attempt to block execution on a dispatcher
object. Unlike APCs, DPC routines make no assumptions about what process
context the processor is executing.

22.3.2.5 Exceptions and Interrupts

The kerne] dispatcher also provides trap handling for exceptions and interrupts
generated by hardware or software. Windows XP defines several architecture-
independent exceptions, including:

Memory-access violation

Integer overtlow

Floating-point overflow or underflow

Integer divide by zero

Floating-point divide by zero

Hllegal instruction

Data misalignment

Privileged instruction

Page-read error

Access violation

Paging file quota exceeded

Debugger breakpoint

Debugger single step
The trap handlers deal with simple exceptions. Elaborate exception handling
is performed by the kernel’s exception dispatcher. The exception dispatcher
creates an exception record containing the reason for the exception and finds
an exception handler to deal with it

When an exception occurs in kernel mode, the exception dispatcher simply
calls a routine to locate the exception handler. If no handler is found, a fatal
system error occurs and the user is left with the infamous “blue screen of death™
that signifies system failure,

Exception handling is more complex for user-mode processes, because
an environmental subsystem (such as the POSIX system) sets up a debugger
port and an exception port for every process it creates. If a debugger port
is registered, the exception handler sends the exception to the port. If the

debugger port is not found or does not handle that exception, the dispatcher
attempts to find an appropriate exception handler. If no handler is found, the

768

Chapter 22 :vv0 o 50

31 machine check or bus error
30 power fail
29 interprocessor notification {request ancther processor
to act; e.9., dispatch a process or update the TLB)
28 clock (used to keep track of time)
27 profile
3-26 traditional PC IRQ hardware interrupls
2 dispatch and deferred procedure call (DPC) {kernei)
1 asynchronous procedure call {(APC)
0 passive

Figure 22.2 Windows XP interrupt request levels.

debugger is called again to catch the error for debugging. If no debugger
is running, : message is sent to the process’s exception port to give the
environmei ial subsystem a chance to translate the exception. For example,
the POSIX environment translates Windows XD exception messages into POSIX
signals before sending them to the thread that caused the exception. Finally,
if nothing else works, the kernel simply terminates the process containing the
thread that caused the exception.

The interrupt dispatcher in the kernel handles interrupts by calling either
an interrupt service routine (ISR} supplied by a device driver or a kernel
trap-handler routine. The interrupt is represented by an interrupt object that
contains all the information needed to handle the interrupt. Using an interrupt
object makes it easy to associate interrupt-service routines with an interrupt
without having to access the interrupt hardware directly.

Different processor architectures, such as Intel and DEC Alpha, have
different types and numbers of interrupts. For portability, the interrupt
dispatcher maps the hardware interrupts into a standard set. The interrupts
are prioritized and are serviced in priority order. Thete are 32 interrupt request
levels (IRQLs) in Windows XP. Eight are reserved for use by the kernel; the
remaining 24 represent hardware interrupts via the HAL (although most 1A32
systems use only 16). The Windows XP interrupts are defined in Figure 22.2.

The kernel uses an interrupt-dispatch table to bind each interrupt level to
a service routine. In a multiprocessor computer, Windows XP keeps a separate
interrupt-dispatch table for each processor, and each processor’s IRQL can be set
independently to mask out interrupts, All interrupts that occur at a level equal
to or less than the IRQL of a processor are blocked until the IRQL is lowered by a
kernel-level thread or by an ISR returning from interrupt processing. Windows
XP takes advantage of this property and uses software interrupts to deliver
APCs and DPCs, to perform system functions such as synchronizing threads

with /0 completion, to start thread dispatches, and to handle timers.

22.3.3 Executive

The Windows XP executive provides a set of services that all envirenmental
subsystems use. The services are grouped as follows: object manager, virtual

223 B T RS 769

memory manager, process manager, local procedure call facility, 1/0 man-
ager, cache manager, security reference monitor, plug-Mnd-play and security
managers, registry, and booting,

22.3.3.1 Object Manager

For managing kernel-mode entities, Windows XP uses a generic set of interfaces
that are manipulated by user-mode programs. Windows XP calls these entities
objects, and the executive component that manipulates them is the object
manager. Each process has an object table containing entries that track the
objects used by the process. User-mode code accesses these objects using an
opaque value called a handle that is returned by many APls. Object handles can
also be created by duplicating an existing handle, either from the same process
or a different process. Examples of objects are semaphores, mutexes, events,
processes, and threads, These are all dispatcher objects. Threads can bloek in the
kernel dispatcher waiting for any of these objects to be signaled. The process,
thread, and virtual memory APIs use process and thread handles to identify
the process or thread to be operated on. Other examples of objects include
files, sections, ports, and various internal I/C objects. File objects are used to
maintain the open state of files and devices. Sections are used to map files. Open
files are described in terms of file objects. Local-communication endpoints are
implemented as port objects.

The object manager maintains the Windows XP internal name space. In
contrast to UNIX, which roots the system name space in the file system,
Windows XP uses an abstract name space and connects the file systems as
devices.

The object manager provides interfaces for defining both object types and
object instances, translating names to objects, maintaining the abstract name
space (through internal directories and symbolic links), and managing object
creaticn and deletion. Objects are typically managed using reference counts in
protected-mode code and handles in user-mode code. However, some kernel-
mode components use the same APIs as user-mode code and thus use handles
to manipulate objects. If a handle needs to exist beyond the lifetime of the
current process, it is marked as a kernel handle and stored in the object table
for the system process. The abstract name space does not persist across reboots
but i$ built up from configuration information stored in the system registry,
plug-and-play device discovery, and creation of objects by system components.

The Windows XP executive allows any object to be given a name. One
process may create a named object, while a second process opens a handle to
the object and shares it with the first process. Processes can also share objects’
by duplicating handles between processes, in which case the objects rieed not
be named.

A name can be either permanent or temporary. A permanent name
represents an entity, such as a disk drive, that remains even if no process
is accessing it. A temporary name exists only while a process holds a handle
to the object.

Object names are structured like file path names in MS-DOS and UNIX. Name
space directories are represented by a directory object that contains the names
of all the objects in the directory. The object name space is extended by the
addition of device objects representing volumes containing file systems.

770

Chapter 22

Objects are manipulated by a set of virtual functions with implementa-
tions providea for each object tvpe: create(), open(), close (), delete(),
query name (), parse (), and security (). The latter three objects need expla-
nation:

query name() is called when a thread bas a reference to an object but
wants to know the object’s name.

parse () is used by the object manager to search for an object given the
object’s name.

security() iscalled to make security checks on all object operations, such
as when a process opens or closes an object, makes changes to the security
descriptor, or duplicates a handle for an object.

The parse procedure is used to extend the abstract name space to include
files. The translation of a path name to a file object begins at the root of
the abstract name space. Path-name components are separated by whack
characters ('\') rather than the slashes (/") used in UNIX. Each component
is looked up in the current parse directory of the name space. Internal nodes
within the name space are either directories or symbolic links. If a leaf object
is found and there are no path-name components remaining, the leaf object
is returned. Otherwise, the leaf object’s parse procedure is invoked with the
remaining path name.

Tarse procedures are only used with a small number of objects belonging
to the Windows GUI, the configuration manager (registry), and—most notably
—device objects representing file systems.

The parse procedure for the device object type allocates a file object and
initiates an open or create 1/0 operation on the file system. If successful, the
file object fields are filled in to describe the file.

In summary, the path name to a file is used to traverse the object-manager
namespace, translating the original absolute path name into a {(device object,
relative path name) pair. This pair is then passed to the file system via the 1/0
manager, which fills in the file object. The file object itself has no name but is
referred to by a handle.

UNIX file systems have symbolic links that permit multiple nicknames —
or aliases — for the same file. The symbolic-link object implemented by the
Windows XP object manager is used within the abstract name space, not to
provide files aliases on a file system. Even so, symbolic links are very useful.
They are used to organize the name space, similar to the organization of the
/devices directory in UNIX, They arc also used to map standard M$-DOS drive
letters to drive names. Drive letters are symbolic links that can be temapped
to suit the convenience of the user or administrator.

Drive letters are one place where the abstract name space in Windows XP
is not global. Fach logged-on user has his or her own set of drive letters so
that users can avoid interfering with one another. In contrast, terminal server
sessions share all processes within a session. BaseNamedObjects contain the
named objects created by most applications.

Although the name space is not directly visible across a network, the object
managet’s parse () method is used to help access a named object on another
system. When a process attempts to open an object that resides on a remote

223 771

computet, the object manager calls the parse method for the device object
corresponding to a network redirector. This results in an 1/0 operation that
accesses the file across the network.

Objects are instances of an object type. The object type specifics how
instances are to be allocated, the definitions of the data fields, and the
implementation of the standard set of virtual functions used for all objects.
These functions implement operations such as mapping names to objects,
closing and deleting, and applying security.

The object manager keeps track of two counts for each object. The pointer

count is the number of distinct references made to an object. Protected-mode
code that refers to objects must keep a reference on the object to ensure that the
object is not deleted while in use. The handlie count is the number of handle
table entries referring to an object. Each handle is also reflected in the reference
count. -
When a handle for an object is closed, the object’s close routine is called. In
the case of file objects, this call causes the I/ O manager to do a cleanup operation
at the close of the last handle. The cleanup operation tells the file system that the
file is no longer accessed by user mode so that sharing restrictions, range locks,
and other states specific to the corresponding open routine can be removed.

Each handle close removes a reference from the pointer count, but internal
system components may retain additional references. When the final reference
is removed, the object’s delete procedure is called. Again using file objects as an
example, the delete procedure causes the 1/0 manager to send the file system a
close operation on the file object. This causes the file system to deallocate any
internal data structures that were allocated for the file object.

After the delete procedure for a temporary object completes, the object is
deleted from memory. Objects can be made permanent (at least with respect to
the current boot of the system) by asking the object manager to take an extra
reference against the object. Thus, permanent objects are not deleted even when
the last reference outside the object manager is removed. When a permanent
object is made temporary again, the object manager removes the extra reference.
If this was the last reference, the object is deleted. Permanent objects are rare,
used mostly for devices, drive-letter mappings, and the directory and symbolic
link objects.

The job of the object manager is to supervise the use of all managed objects.
When a thread wants to use an object, it calls the object manager’s open()
method to get a reference to the object. If the object is being opened from a
user-mode ATl the reference is inserted into the process’s object table, and a
handie is returned.

A process gets a handle by creating an object, by opening an existing
object, by receiving a duplicated handie from another process, or by inheriting
a handle from a parent process, similar to the way a UNIX process gets a file
descriptor. These handles are all stored in the process’s object table. An entry
in the object table contains the object’s access rights and states whether the
handle should be inherited by child processes. When a process terminates,
Windows XP automatically closes all the process’s open handles.

Handles are a standardized interface to all kinds of objects. Like a file
descriptor in UNIX, an object handle is an identifier unique to a process that
confers the ability to access and manipulate a system resource, Handles can
be duplicated within a process or between processes. The latter case is used

772

Chapter 22 gl x

when child processes are created and when out-of-process execution contexts
are implemented.

Since the object manager is the only entity that generates object handles,
it is the natural place to check security. The object manager checks whether
a process has the right to access an object when the process tries to open the
object. The object manager also enforces quotas, such as the maximum amount
of memory a process may use, by charging a process for the memory occupied
by all its referenced objects and refusing to allocate more memory when the
accumulated charges exceed the process’s quota.

When the login process authenticates a user, an access token is attached to
the user’s process. The access token contains information such as the security
ID, group IDs, privileges, primary group, and default access-control list. The
services and objects a user can access are determined by these attributes.

The token that controls access is associated with the thread making the
access. Normally, the thread token is missing and defaults to the process token,
but services often need to execute code on behalf of their client. Windows xpP
allows threads to impersonate temporarily by using a client’s token. Thus, the
thread token is not necessarily the same as the process token.

In Windows XP, each object is protected by an access-conirol list that
contains the security 1Ds and access rights granted. When a thread attempts
to access an object, the system compares the security 1D in the thread’s access
token with the object’s access-control list to determine whether access should
be permitted. The check is performed only when an object is opened, so it is not
possible to deny access after the open occurs. Operating-system components
executing in kernel mode bypass the access check, since kernel-mode code
is assumed to be trusted. Therefore, kernel-mode code must avoid security
vulnerabilities, such as leaving checks disabled while creating a user-mode-
accessible handle in an untrusted process.

Generally, the creator of the object determines the access—control list for
the object. If none is explicitly supplied, one may be set to a default by the
object type’s open routine, or a default list may be obtained from the user’s
access-token object.

The access token has a field that controls auditing of object accesses.
Operations that are being audited are logged to the system’s security log with
an identification of the user. An administrator monitors this log to discover
attempts to break into the system or to access protected objects.

22.3.3.2 Virtual Memory Manager

The executive component that manages the virtual address space, physical
memory allocation, and paging is the virtual memory (VM) manager. The
design of the VM manager assumes that the underlying hardware supports
virtual-to-physical mapping, a paging mechanism, and transparent cache
coherence on multiprocessor systems, as well as allowing multiple page-table

.entries to map to the same physical page frame. The VM manager in Windows

XP uses a page-based management scheme with a page size of 4 KB on 1AR2-
compatible processors and 8 KB on the 1464 Pages of data allocated to a process
that are not in physical memory are either stored in the paging files on disk or
mapped directly to a regular file on a local or remote file system. Pages can also

22.3 RIS L S BN L L P 773

be marked zero-fill-on-demand, which fills the page with zeros before being
allocated, thus erasing the previous contents.

On IA32 processors, each process has a 4-GB virtual address space. The
upper 2 GB are mostly identical for all processes and are used by Windows XP
in kernel mode to access the operating-system code and data structures. Key
areas of the kernel-mode region that are not identical for all processes are the
page-table self-map, hyperspace, and session space. The hardware references
a process’s page tables using physical page-frame numbers. The VM manager
maps the page tables into a single 4-MB region in the process’s address space
so they are accessed through virtual addresses. Hyperspace maps the current
process’s working-set information into the kernel-mode address space.

Session space is used to share the Win32 and other session-specific drivers
among all the processes in the same terminal-server session rather than all the
processes in the system. The lower 2 GB are specific to each process and are
accessible by both user- and kernel-mode threads. Certain configurations of
Windows XP reserve only 1 GB for operating-system use, allowing a process to
use 3 GB of address space. Running the system in 3-GB mode drastically reduces
the amount of data caching in the kernel. However, for large applications
that manage their own 1/0, such as SQL databases, the advantage of a larger
user-mode address space may be worth the loss of caching.

The Windows XP VM manager uses a two-step process to allocate user
memory. The first step reserves a portion of the process’s virtual address space.
The second step commits the allocation by assigning virfual memory space
(physical memrory or space in the paging files). Windows XP limits the amourt
of virtual memiory space a process consumes by enforcing a quota on committed
memory. A process decommits memory that it is no longer using to free up
virtual memory for use by other processes. The APIs used to reserve virtual
addresses and commit virtual memory take a handle on a process object as a
parameter. This allows one process to control the virtual memory of another.
Environmental subsystems manage the memory of their client processes in this
way.

For performance, the VM manager allows a privileged process to lock
selected pages in physical memory, thus ensuring that the pages are not paged
out to the paging file. Processes also allocate raw physical memory and then
map regions into its virtual address space. 1A32 processors with the physical
address extension {PAE) feature can have up to 64 GB of physical memory ona
system. This memory cannot all be mapped in a process’s address space at once,
but Windows XP makes it available using the address windowing extension
(AWE) APIs, which allocate physical memory and then map regions of virtual
addresses in the process’s address space onto part of the physical memory.
The AWE facility is used primarily by very large applications such as the SQL
database.

Windows XP implements shared memory by defining a section object.
After getting a handle to a section object, a process maps the memory portion
it needs into its address space. This portion is called a view. A process redefines
its view of an object to gain access to the entire object, one region at a time.

A process can control the use of a shared-memory section object in many
ways. The maximum size of a section can be bounded. The section can be
backed by disk space either in the system-paging file or in a regular file (a
memory-mapped file). A section can be based, meaning the section appears at

774

Chapter 22

the same virtual address for all processes attempting to access it. Finally, the
memory protection of pages in the section can be set to read-only, read - write,
read - write-execute, execute-only, no access, or copy-on-write. The last two of
these protection settings need some explanation:

A no-access page raises an exception if accessed; the exception is used, for
example, to check whether a faulty program iterates beyond the end of
an array. Both the user-mode memory allocator and the special kemnel
allocator used by the device verifier can be configured to map each
allocation onto the end of a page followed by a no-access page in order to
detect buffer overruns.

The copy-on-twrite mechanism increases the efficient use of physical memory
by the VM manager. When two processes want independent copies of an
object, the VM manager places a single shared copy into virtual memory
and activates the copy-on-write property for that region of memory. If
one of the processes tries to modify data in a copy-on-write page, the VM
manager makes a private copy of the page for the process.)

The virtual address translation in Windows XP uses a multilevel page
table. For 1A32 processors without the physical address extensions enabled,
each process has a page directory that contains 1,024 page-directory entries
(PDEs) of size 4 bytes. Each PDE points to a page table that contains 1,024
page-table entries (PTEs) of size 4 bytes. Each PTE points to a 4-KB page frame
in physical memory. The total size of all page tables for a process is 4 MB, so the
VM manager pages out individual tables to disk when necessary. See Figure
22.3 for a diagram of this structure.

The page directory and page tables are referenced by the hardware via
physical addresses. To improve performance, the VM manager self-maps

sy age - :
directory | directory | d?f:ggfy

_entry _entry-
ol 49 Yo
7 \
page- page ["pags page- page .| page-
table table 0 |* tabbes: tble | table 1023 | ‘table
- entry Eoir i O . epiry. entry
0 1088 0 . 1023

4K
page

_page . page

Figure 22.3 Page table layout.

22.3 DETRATEILIRE RS P 775

the page directory and page tables into a 4-MB region of virtual addresses.
The self-map allows the VM manager to translate a virtual address into the
corresponding PDE or PTE without additional memory accesses. When a process -
context is changed, a single page-directory entry needs to be changed to map
the new process’s page tables. For a variety of reasons, the hardware requires
that each page directory or page table occupy a single page. Thus, the number
of PDEs or PTEs that fit in a page determine how virtual addresses are translated.

The following describes how virtual addresses are translated into physical
addresses on 1a32-compatible processors (without PAE enabled). A 10-bit value
can represent all the values from 0 to 1,023. Thus, a 10-bit value can select any
entry in the page directory or in a page table. This property is used when a
virtual address pointer is translated to a byte address in physical memory. A
32-bit virtual-memory address is split into three values, as shown in Figure
22.4. The first 10 bits of the virtual address are used as an index into the page
directory. This address selects one page-directory entry (PDE), which contains
the physical page frame of a page table. The memory-management unit (MMU)
uses the next |0 bits of the virtual address to select a PTE from the page table.
The PTE specifies a page frame in physiral memory. The remaining 12 bits of
the virtual address are the offset of a specific byte in the page frame. The MMU
creates a pointer to the specific byte in physical memory by concatenating the
20 bits from the PTE with the lower 12 bits from the virtual address. Thus,
the 32-bit PTE has 12 bits to describe the state of the physical page. The 1A32
hardware reserves 3 bits for use by the operating system. The rest of the bits
specify whether the page has been accessed or written, the caching attributes,
the access mode, whether the page is global, and whether the I'TE is valid.

[A32 processors running with PAE enabled use 64-bit PDEs and PTEs in
order to represent the larger 24 -bit page-frame number field. Thus, the second-
level page directories and the page tables contain only 512 PDEs and PTEs,
respectively. To provide 4 GB of virtual address space requires an extra level of
page directory containing four PDEs. Translation of a 32-bit virtual address uses
2 bits for the top-level directory index and @ bits for each of the second-level
page directories and the page tables.

To avoid the overhead of translating every virtual address by locking
up the PDE and PTE, processors use a translation-lookaside buffer {TLB),
which contains an associative memory cache for mapping virtual pages to
PTEs. Unlike the 1A32 architecture, in which the TLB is maintained by the
hardware MMLJ, the [A64 invokes a software-trap routine to supply translations
missing from the Ti.B. This gives the VM manager flexibility in choosing the
data structures to use. In Windows XP, a three-level tree structure is chosen for
mapping user-modc virtual addresses on the 1As4.

31 0

|

r ;E-JE—r \ PTE] page offset

Figure 22.4 Virtual-to-physical address translation on IA32.

776

Chapter22 i indow - X1

On 1A64 processors, the page size is 8 KB, but the PTEs occupy 64 bits, so a
page still contains only 1,024 (10 bits’ worth) of PDEs or PTEs. Therefore, with 10
bits of top-level PDEs, 10 bits of second-level, 10 bits of page table, and 13 bits of
page offset, the user portion of the process’s virtual address space for Windows
XP on the 1464 is 8 TB (43 bits” worth). The 8-TB limitation in the current version
of Windows XP is less than the capabilities of the 1A64 processor but represents
a tradeoff between the number of memory references required to handle TLB
misses and the size of the user-mode address space supported.

A physical page can be in one of six states: valid, free, zeroed, maodified,
standby, bad, or in transition.

* A valid page isin use by an active process.
3 A free page is a page that is not referenced in a PTE,

* A zeroed page is a free page that has been zeroed out and is ready for
immediate use to satisfy zero-on-demand faults.

= A modified page is one that has been written by a process and must be sent
to the disk before it is allocated for another process.

* A standby page is a copy of information already stored on disk. Standby
pages can be pages that were not modified, modified pages that have
already been written to the disk, or pages that were prefetched to exploit
locality.

* A bad page is unusable because a hardware error has been detected.

* Finally, a transition page is one that is on its way in from disk to a page
frame allocated in physical memory.

When the valid bit in a PTE is zero, the VM manager defines the format of
the other bits. Invalid pages can have a number of states represented by bits in
the PTE. Page-file pages that have never been faulted in are marked zero-on-
demand. Files mapped through section objects encode a pointer to that section
object. Pages that have been written to the page file contain enough information
to find the page on disk, and so forth.

The actual structure of the page-file PTE is shown in Figure 22.5. The PTE
contains 5 bits for page protection, 20 bits for page-file offset, 4 bits to select the
paging file, and 3 bits that describe the page state. A page-file PTE is marked to
be an invalid virtual address to the MMU. Since executable code and memory-
mapped files already have a copy on disk, they do not need space in a paging
file. If one of these pages is not in physical memory, the PTE structure is as

3 : 0

L]

page
file

1]

Figure 22.5 Page-file page-table entry. The valid bit is zero.

page address |

223 mesiony Cumiponenss 777

follows: The most significant bit is used to specify the page protection, the next
28 bits are used to index into a system data structure that indicates a file and
offset within the file for the page, and the lower 3 bits specify the page state.

Invalid virtual addresses can also be in a number of temporary states that
are part of the paging algorithms, When a page is removed from a process
working set, it is moved either to the modified list (to be written to disk) or
directly to the standby list. If written to the standby list, the page is reclaimed
without being read from disk if it is needed again before it is moved to the free
list. When possible, the VM manager uses idle CPU cycles to zero pages on the
free list and move them to the zeroed list. Transition pages have been allocated
a physical page and are awaiting the completion of the paging 1/0 before the
PTE is marked as valid.

Windows XP uses section objects to describe pages that are sharable
between processes. Each process has its own set of virtual page tables, but
the section object also includes a set of page tables containing the master {or
prototype) PTEs. When a PTE in a process page table is marked valid, it points
to the physical page frame containing the page, as it must on 1432 processors,
where the hardware MMU reads the page tables directly from memory. But
when a shared page is made invalid, the PTE is edited to point to the prototype
PTE associated with the section object.

The page tables associated with a section object are virtual insofar as they
are created and trimmed as needed. The only prototype PTEs needed are
those that describe pages for which there is a currently mapped view. This
greatly improves performance and allows more efficient use of kernel virtual
addresses.

The prototype PTE contains the page-frame address and the protection

and state bits. Thus, the first access by a process to a shared page generates a
page fault. After the first access, further accesses are performed in the normal
manner. If a process writes to a copy-on-write page marked read-only in the
PTE, the VM manager makes a copy of the page and marks the PTE writable,
and the process effectively does not have a shared page any longer. Shared
pages never appear in the page file but are instead found in the file system.
* The VM manager keeps track of all pages of physical memory in a page-
frame database. There is one entry for every page of physical memory in the
system. The entry points to the PTE, which in turn points to the page frame, so
the VM manager can maintain the state of the page. Page frames not referenced
by a valid PTE are linked to lists according to page type, such as zeroed,
modified, or free.

If a shared physical page is marked as valid for any process, the page
cannot be removed from memory. The VM manager keeps a count of valid PTEs
for each page in the page-frame database. When the count goes to zero, the
physical page can be reused once its contents have been written back to disk
(if it was marked dirty).

When a page fault occurs, the VM manager finds a physical page to hold
the data. For zero-on-demand pages, the first choice is to find a page that has
already been zeroed. If none is available, a page from the free list or standby
list is chosen, and the page is zeroed before proceeding. If the faulted page
has been marked as in transition, it is either already being read in from disk
ot has been unmapped or trimmed and is still available on the standby or

778

Chapter 22

modified list. The thread either waits for the 1/0 to complete or, in the latter
cases, reclaims the page from the appropriate list.

Otherwise, an 1/0 must be issued to read the page in from the paging file
or file system. The VM manager tries to allocate an available page from either
the free list or the standby list. Pages in the modified list cannot be used until
they have been written back to disk and transferred to the standby list. If no
pages are available, the thread blocks until the working-set manager trims
pages from memory or a page in physical memory is unmapped by a process.

Windows XP uses a per-process first-in, first-out (FIFQ) replacement policy
to take pages from processes that are using more than their minimum working-
set size. Windows XP monitors the page faulting of each process that is at its
minimum working-sct size and adjusts the working-set size accordingly. When
a process is started, it is assigned a default minimum working-set size of 50
pages. The VM manager replaces and trims pages in the working set of a process
according to their age. The age of a page is determined by how many trimming
cycles have occurred without the PTE. Trimmed pages are moved to the standby
or madified list, depending on whether the modified bit is set in the page’s
PTE.

The VM manager does not fault in only the page immediately needed.
Research shows that the memory referencing of a thread tends to have a
locality property; when a page is used, it is likely that adjacent pages will
be referenced in the near future. (Think of iterating over an array or fetching
sequential instructions that form the executable code for a thread.) Because of
locality, when the VM manager faults in a page, it also faults in a few adjacent
pages. This prefetching tends to reduce the total number of page faults. Writes
are also clustered to reduce the number of independent 1/0 operations.

In addition to managing committed memory, the VM manager manages
each process’s reserved memory, or virtual address space. Each process has an
associated splay tree that describes the ranges of virtual addresses in use and
what the use is. This allows the VM manager to fault in page tables as needed.
If the PTE for a faulting address does not exist, the VM manager searches for
the address in the process’s tree of virtual address descriptors (VADs) and
uses this information to fill in the missing PTE and retrieve the page. In some
cases, a page-table page itself may not exist; such a page must be transparently
allocated and initialized by the VM manager.

22.3.3.3 Process Manager

The Windows XP process manager provides services for creating, deieting, and
using processes, threads, and jobs. It has no knowledge about parent—child
relationships or process hierarchies; those refinements are left to the particular
environmental subsystem that owns the process. The process manager is also
notinvolved in the scheduling of processes, other than setting the priorities and
affinities in processes and threads when they are created. Thread scheduling
takes place in the kernel dispatcher.

Each process contains one or more threads. Processes themselves can be
collected together into large units called job objects; the use of job objects
allows limits on CPU usage, working-set size, and processor affinities that
control multiple processes at once. Job objects are used to manage large
datacenter machines,

22.3 - 779

An example of process creation in the Win32 APl environment is as follows.
When a Win32 APl application calls CreateProcess ():

A message is sent to the Win32 AP subsystem to notify it that the process
is being created.

CreateProcess () in the original process then calls an AP| in the process
manager of the NT executive to actually create the process.

The process manager calls the object manager to create a process object
and returns the object handle to Win32 Apl.

Win32 APl calls the process manager again to create a thread for the process
and returns handles to the new process and thread.

The Windows XP APis for manipulating virtual memeory and threads and
for duplicating handles take a process handle, so subsystems can perform
operations on behalf of a new process without having to execute directly in
the new process’s context. Once a new process is created, the initial thread
is created, and an asynchronous procedure call is delivered to the thread to
prompt the start of execution at the user-mode image loader. The loader is an
ntdll.dll, which is a link library automatically mapped into every newly created
process. Windows XP also supports a UNIX fork() style of process creation in
order to support the POSIX environmental subsystem. Although the Win32 APl
environment calls the process manager from the client process, POSIX uses the
cross-process nature of the Windows XP APIs to create the new process from
within the subsystem process.

The process manager also implements the queuing and delivery of asyn-
chronous procedure calls (APCs) to threads. APCs are used by the system to
initiate thread execution, complete 1/0, terminate threads and processes, and
attach debuggers. User-mode code can also queue an APC to a thread for
delivery of signal-like notifications. To support POSIX, the process manager
provides APIs that send alerts to threads to unblock them from system calls.

The debugger support in the process manager includes the capabitity to
suspend and resume threads and to create threads that begin in a suspénded
mode. There are also process-manager APIs that get and set a thread’s register
context and access another process’s virtual memory.

Threads can be created in the current process; they can also be injected into
another process. Within the executive, existing threads can temporarily attach
to another process. This method is used by worker threads that need to execute
in the context of the process originating a work request.

The process manager also supports impersonation. A thread running in a
process with a security token belonging to one user can set a thread-specific
token belonging to another user. This facility is fundamental to the client-
server computing model, where services need to act on behalf of a variety of
clients with different security IDs.

22.3.3.4 Local Procedure Call Facility

The implementation of Windows XP uses a client—server model. The environ-
mental subsystems are servers that implement particular operating-system
personalities. The client-server model is used for implementing a variety

780

Chapter 22 Wi.dow AT

of operating-system services besides the environmental subsystems. Security
management, printer spooling, web services, network file systems, plug-and-
play, and many other features are implemented using this model. To reduce
the memory footprint, multiple services are often collected together into a few
processes, which then rely on the user-mode thread-pool facilities to share
threads and wait for messages (see Section 22.3.3.3).

The operating system uses the local procedure call (LPC) fac111ry to pass
requests and results between client and server processes within a single
machine. In particular, LPC is used to request services from the various
Windows XP subsystems. LPC is similar in many respects to the RPC mech-
anisms used by many operating systems for distributed processing across
networks, but LPC is optimized for use within a single system. The Windows
XP implementation of Open Software Foundation {OSF) RPC often uses LPC as
a transport on the local machine.

LPC is a message-passing mechanism. The server process publishes a
globally visible connection-port object. When a client wants services from a
subsystem, it opens a handle to the subsystem’s connection-port object and
sends a connection request to the port. The server creates a channel and returns
a handle to the client. The channel consists of a pair of private communication
ports: one for client-to-server messages and the other for server-to-client
messages. Communication channels support a callback mechanism, so the
client and server can accept requests when they would normally be expecting
a reply.

When an LPC channel is created, one of three message- passmg techniques
must be specified.

I. The first technique is suitable for small messages (up to a couple
of hundred bytes). In this case, the port’'s message queue is used as
intermediate storage, and the messages are copied from one process to
the other.

X4

The second technique is for larger messages. In this case, a shared-
mermory section object is created for the channel. Messages sent through
the port’s message queue contain a pointer and size information referring
to the section object. This avoids the need to copy large messages. The
sender places data into the shared section, and the receiver views them
directly.

The third technique uses the APIs that read and write directly into a
process’s address space. The LPC provides functions and synchronization
s0 a server can access the data in a client.

The Win32 APl window manager uses its own form of message passing
that is independent of the executive LPC facilities. When a clierit asks for a
connection that uses window-manager messaging, the server sets up three
objects: (1) a dedicated server thread to handle requests, {2) a 64-KB section
object, and (3} an event-pair object. An event-pair object is a synchronization
object that is used by the Win32 API subsystem to provide notification when
the client thread has copied a message to the Win32 API server, or vice versa.
The section object passes the messages, and the event-pair object performs
synchronization.

22.3 781
Window-manager messaging has several advantages:

The section object eliminates message copying, since it represents a region
of shared memory.

The event-pair object eliminates the overhead of using the port object to
pass messages containing pointers and lengths.

The dedicated server thread eliminates the overhead of determining which
client thread is calling the server, since there is one server thread per client
thread.

The kernel gives scheduling preference to these dedicated server threads
to improve performance.

22.3.3.5 I/O Manager

The I/O manager is responsible for file systems, device drivers, and network
drivers. It keeps track of which device drivers, filter drivers, and file systems
are loaded, and it also manages buffers for /0 requests. It works with the
VM manager to provide memory-mapped file !/ and controls the Windows
XP cache manager, which handles caching for the entire 1/0 system. The /0
manager is fundamentally asynchronous. Synchronous 1/0 is provided by
explicitly waiting for an 1/0 operation to complete. The I/0 marager provides
several models of asynchronous 1/0 completion, including setting of events,
delivery of APCs to the initiating thread, and use of 1/0 completion ports, which
allow a single thread to process 1/0 completions from many other threads.

Device drivers are arranged as a list for each device (called a driver or 1/0
stack because of how device drivers are added). The 1/0O manager converts the
requests it receives into a standard form called an /O request packet (IRP). It
then forwards the IRP to the first driver in the stack for processing. After each
driver processes the IRP, it calls the 1/O manager either to forward it to the next
driver in the stack or, if all processing, is finished, to complete the operation on
the IRP.

Completions may occur in a different context from the original 1/0 request.
For example, if a driver is performing its part of an 1/0 operation and is forced
to block for an extended time, it may queue the IRP to a worker thread to
continue processing in the system context. In the original thread, the driver
returns a status indicating that the 1/0 request is pending so that the thread
can continue executing in parallel with the 1/0 operation. IRI’s may also be
processed in interrupt-service routines and completed in an arbitrary context.
Because some final processing may need to happen in the context that initiated
the 1/0, the 170 manager uses an APC to do final 1/0-completion processing in
the context of the originating thread.

The stack model is very flexible. As a driver stack is built, various drivers
have the opportunity to insert themselves into the stack as filter drivers.
Filter drivers can examine and potentially modify each 170 operation. Mount
management, partition management, and disk striping and mirroring are alt
examples of functionality implemented using filter drivers that execute beneath
the file system in the stack. File-system filter drivers execute above the file
system and have been used to implement functionality such as hierarchical
storage management, single instancing of files for remote boot, and dynamic

782

Chapter 22

format conversion. Third parties also use file-system filter drivers to implement
virus detection.

Jevice drivers for Windows XP are written to the Windows Driver Model
(WDM) specification. This model lays out all the requirements for device drivers,
including how to layer filter drivers, share common code for handling power
and plug-and-play requests, build correct cancellation logic, and so forth.

Because of the richness of the WDM, writing a full WwDM device driver
for each new hardware device can involve an excessive amount of work.
Fortunately, the port/ miniport model makes it unnecessary to do this. Within
a class of similar devices, such as audie drivers, SCSI devices, or Ethernet
controllers, each instance of a device shares a common driver for that class,
called a port driver. The port driver implements the standard operations for
the class and then calls device-specific routines in the device’s miniport driver
to implement device-specific functionality.

22.3.3.6 Cache Manager

In many operating systems, caching is done by the file system. Instead,
Windows XP provides a centralized caching facility. The cache manager works
closely with the VM manager to provide cache services for all components
under the control of the 1/0 manager. Caching in Windows XP is based on files
rather than raw blocks.

The size of the cache changes dynamically according to how much free
memory is available in the system. Recall that the upper 2 GB of a process’s
address space comprise the system area; it is available in the context of all
processes. The VM manager allocates up to one-half of this space to the system
cache. The cache manager maps files into this address space and uses the
capabilities of the VM manager to handle file t/0.

The cache is divided into blocks of 256 KB. Each cache block can hold a
view (that is, a memory-mapped region) of a file. Each cache block is described
by a virtual address control block (VACB) that stores the virtual address and
file offset for the view, as well as the number of procésses using the view. The
VACBs reside in a single array maintained by the cache manager.

For each open file, the cache manager maintains a separate VACB index
array that describes the caching for the entire file. This array has an entry for
each 256-KB chunk of the file; so, for instance, a 2-ME file would have an 8-entry
VACB index array. An entry in the VACB index array points to the VACB if that
portion of the file is in the cache; it is nult otherwise. When the 1/0 manager
receives a file’s user-level read request, the 1/0 manager sends an IRP to the
device-driver stack on which the file resides. The file system attempts to look
up the requested data in the cache manager (unless the request specifically asks
for a noncached read). The cache manager calculates which entry of that file’s
VACB index array corresponds to the byte offset of the request. The entry either
points to the view in the cache or is invalid. If it is invalid, the cache manager
allocates a cache block (and the corresponding entry in the VACB array) and
maps the view into the cache block. The cache manager then attempts to copy
data from the mapped file to the caller’s buffer. If the copy succeeds, the
operation is completed.

If the copy fails, it does so because of a page fault, which causes the VM
manager to send 2 noncached read request to the | /O manager. The 1/0 manager

223 o 783

process

1o I/O manager
-1 cached O o

cache marager ¢ = file system

data copy nencached /O
page fault !
VM manager i disk driver
' L

Figure 226 File /0.

sends another request down the driver stack, this time requesting a pagiing
operation, which bypasses the cache manager and reads the data from the file
directly into the page allocated for the cache manager. Upon completion, the
VACB is set to point at the page. The data, now in the cache, are copied to the
caller’s buffer, and the original 170 request is completed. Figure 22.6 shows an
overview of these operations.

When possible, for synchronous operations on cached files, 1/0 is handled
by the fast 10 mechanism. This mechanism parallels the normal IRP-based
I/0 but calls into the driver stack directly rather than passing down an IR
Because no IRP is involved, the operation should not block for an extended
period of time and cannot be queued to a worker thread. Therefore, when the
operation reaches the file system and calls the cache manager, the operation
fails if the information is not already in cache. The I/0 manager then attempts
the operation using the normatl iRP path.

Akernel-level read operation is similar, except that the data can be accessed
directly from the cache, rather than being copied to a buffer in user space.
To use file-system metadata (data structures that describe the file system),
the kernel uses the cache manager’s mapping interface to read the metadata.
To modify the metadata, the file system uses the cache managet’s pinning
interface. Pinning a page locks the page into a physical-memory page frame
so that the VM manager cannot move or page out the page. After updating
the metadata, the file system asks the cache manager to unpin the page. A
modified page is marked dirty, and so the vM manager flushes the page to
disk. The metadata is stored in a regular file.

To improve performance, the cache manager keeps a small history of read
requests and from this history attempts to predict future requests. If the cache
manager finds a pattern in the previous three requests, such as sequential access
forward or backward, it prefetches data into the cache before the next request is
submitted by the application. In this way, the application finds its data already
cached and does not need to wait for disk 1/0. The Win32 APl OpenFile() and
CreateFile() functions can be passed the FILE FLAG SEQUENTIAL SCAN tlag,

784

Chapter 22

which is a hint to the cache manager to try to prefetch 192 KB ahead of the
thread’s requests. Typically, Windows XP performs 1/0 operations in chunks of
64 KB or 16 pages; thus, this read-ahead is three times the normal amount.

The cache manager is also responsible for telling the VM manager to flush
the contents of the cache. The cache manager’s default behavior is write-back
caching: It accumulates writes for 4 to 5 seconds and then wakes up the cache-
writer thread. When write-through caching is needed, a process can set a flag
when opening the file, or the process can call an explicit cache-flush function.

A fast-writing process could potentially filt all the free cache pages before
the cache-writer thread had a chance to wake up and flush the pages to disk.
The cache writer prevents a process from flooding the system in the following
way. When the amount of free cache memory becomes low, the cache manager
temporarily blocks processes attempting to write data and wakes the cache-
writer thread to flush pages to disk. If the fast-writing process is actually a
network redirector for a network file system, blocking it for too long could
cause network transfers to time out and be retransmitted. This retransmission
would waste network bandwidth. To prevent such waste, network redirectors
can instruct the cache manager to limit the backlog of writes in the cache.

Because a network file system needs to move data between a disk and the
network interface, the cache manager also provides a DMA interface to move
the data directly. Moving data directly avoids the need to copy data through
an intermediate buffer.

22.3.3.7 Security Reference Monitor

Centralizing management of system entities in the object manager enables
Windows XP to use a uniform mechanism to perform run-time access validation
and audit checks for every user-accessible entity in the system. Whenever a
process opens a handle to an object, the security reference monitor (SRM)
checks the process’s security token and the object’s access-control list to see
whether the process has the necessary rights.

The SRM is also responsible for manipulating the privileges in security
tokens. Special privileges are required for users to perform backup or restore
operations on file systems, overcome certain checks as an administrator, debug
processes, and so forth. Tokens can also be marked as being restricted in their
privileges so that they cannot access objects that are available to most users.
Restricted tokens are primarily used to restrict the damage that can be done by
execution of untrusted code.

Another responsibility of the SRM is logging security audit events. A C-2
security rating requires that the system have the ability to detect and log all
attempts to access system resources so that it is easier to trace attempts at
unauthorized access. Because the SRM is responsible for making access checks,
it generates most of the audit records in the security-event log.

22.3.3.8 Plug-and-Play and Power Managers

The operating system uses the plug-and-play (PnP) manager to recognize
and adapt to changes in the hardware configuration. For PnP to work, both
the device and the driver must support the PnP standard. The PnP manager
automatically recognizes installed devices and detects changes in devices as the
system operates. The manager also keeps track of resources used by a device,

22.3 785

as well as potential resources that could be used, and takes care of loading
the appropriate drivers. This management of hardware resources—primarily
interrupts and 1/0 memory ranges—has the goal of determining a hardware
configuration in which all devices are able to operate.

For example, if device B can use interrupt 5 and device A can use 5 or 7,
then the PnP manager will assign 5 to B and 7 to A. In previous versions, the
user might have had to remove device A and reconfigure it to use interrupt 7
before installing device B. The user thus had to study system resources before
installing new hardware and had to determine which devices were using which
hardware resources. The proliferation of PCMCIA cards, laptop docks, and USB,
IEEE 1394, Infiniband, and other hot-pluggable devices also dictates the support
of dynamically configurable resources.

The PnP manager handles dynamic reconfiguration as follows. First, it
gets a list of devices from each bus driver {for example, PCI, USB). It loads
the installed driver (or installs one, if necessary) and sends an add-device
request to the appropriate driver for each device. The PnP manager figures out
the optimal resource assignments and sends a start-device request to each
driver, along with the resource assignment for the device. If a device needs to
be reconfigured, the PnP manager sends a query-stop request, which asks the
driver whether the device can be temporarily disabled. If the driver can disable
the device, then all pending operations are completed, and new operations are
prevented from starting. Next, the PnP manager sends a stop request; it can
then reconfigure the device with another start-device request.

The PnP manager also supports other requests, such as query-remove.
This request, which is used when the user is getting ready to eject a PCCARD
device, operates in a fashion similar to query-stop. The surprise-remove
request is used when a device fails or, more likely, when a user removes a
PCCARD device without stopping it first. The remove request tells the driver to
stop using the device and release all resources allecated to it.

Windows XP supports sophisticated power management. Although these
facilities are useful for home systems to reduce power consumption, their
primary application is for ease of use (quicker access) and extending the battery
life of laptops. The system and individual devices can be moved to low-power
mode (called standby or sleep mode) when notin use, so the battery is primarily
directed at physical memory (RAM) data retention. The system can turn itself
back on when packets are received from the network, a phone line to a inodem
rings, or a user opens a laptop or pushes a soft power button. Windows XP
can also hibernate a system by storing physical memory contents to disk and
completely shutting down the machine, then restoring the system at a later
point before execution continues.

Further strategies for reducing power consumption are supported as well.
Rather than allowing it to spin in a processor loop when the CPU is idle,
Windows XP moves the system to a state requiring lower power consumption.
If the CPU is underutilized, Windows XT reduces the CP'U clock speed, which
can save significant power.

22.3.3.9 Registry

Windows XP keeps much of its configuration information in an internal
database called the registry. A registry database is called a hive. There are

786

22.4

Chapter 22

separate hives for system information, default user preferences, software
installation, and security. Because the information in the system hive is
required in order to boot the systein, the registry manager is implemented
as a component of the executive.

Every time the system successfully boots, it saves the system hive as Jast
knoter good. 1 the user installs software, such as a device driver, that produces
a system-hive configuration that will not boot, the user can usually boot using
the last-known-good configuration.

Damage to the system hive from installing third-party applications and
drivers is so common that Windows XP has a component called system restore
that periodically saves the hives, as well as other software states like driver
executables and configuration files, so that the system can be restored to
a previously working state in cases where the system boots but no longer
operates as expected.

22.3.3.10 Bogting

The booting of a Windows XP PC begins when the hardware powers on and
the BIOS begins executing from ROM. The BIOS identifies the system device
to be booted and loads and executes the bootstrap loader from the front of
the disk. This loader knows enough about the file-system format to load the
NTLDR program from the root directory of the systemn device. NTLDR is used to
determine which boot device contains the operating system. Next, the NTLDR
loads in the HAL library, the kernel, and the system hive from the boot device.
From the svstem hive, it determines what device drivers are needed to boot
the system (the boet drivers) and loads them. Finally, NTLDR begins kernel
execution,

The kernel initializes the system and creates two processes. The system
process contains all the internal worker threads and never executes in user
made. The first user-mode process created is SMSS, which is similar to the
INIT (initialization} process in UNIX. SMSS doees further initialization of the
svstem, including establishing the paging files and loading device drivers, and
creates the WINLOGON and CSRSS processes. CSRSS is the Win3d2 Al subsystem.
WINLOGON brings up the rest of the system, including the LSASS security
subsystem and the remaining services needed to run the system,

The system optimizes the boot process by pre-loading files from disk based
on previous boots of the system. Disk access patterns at boot are also used to
lay out system files on disk to reduce the number of 1/0O operations required.
The processes required to start the svstem are reduced by grouping services
into one process. Al of these approaches contribute to a dramatic reduction in
system boot time. Of course, system boot time is less important than it once
was because of the sleep and hibernation capabiiities of Windows XP, which

altow ysets to power down their computers and the.” quickly resume where
theyteft off.

Environmental subsystems are user-mode processes layered over the native
Windows XP executive services to enable Windows XIP to run programs

224 : 787

developed for other operating systems, including 16-bit Windows, MS-DOS,
and POSIX. Each environmental subsystem provides a single application
environment.

Windows XP uses the Win32 API subsystem as the main operating envi-
ronment, and thus this subsystem starts all processes. When an application is
executed, the Win32 APl subsystem calls the VM manager to load the appli-
cation’s executable code. The memory manager returns a status to Win32
indicating the type of executable. If it is not a native Win32 ATl executable, the
Win3Z APl environment checks whether the appropriate environmental sub-
system is running; if the subsystem is not running, it is started as a user-mode
process. The subsystem then takes control over the application startup.

The environmental subsystems use the LPC facility to provide operating-
system services to client processes. The Windows XP subsystem architecture
keeps applications from mixing API routines from different environments. For
instance, a Win32 ATl application cannot make a POSIX system call, because
only one environmental subsystem can be associated with each process.

Since each subsystem is run as a separate user-mode process, a crash in one
has no effect on other processes. The exception is Win32 API, which provides
all keyboard, mouse, and graphical display capabilities. If it fails, the system is
effectively disabled and requires a reboot.

The Win32 API environment categorizes applications as either graphical or
character based, where a character-based application is one that thinks interactive
output goes to a character-based (command) window. Win32 API transforms
the output of a character-based application to a graphical representation in the
command window, This transformation is easy: Whenever an output routine
is called, the environmental subsystem calls a Win32 routine to display the
text. Since the Win32 APl environment performs this function for all character-
based windows, it can transfer screen text between windows via the clipboard.
This transformation works for MS-DOS applications, as well as for POSIX
command-line applications.

22.4.1 MS-DOS Environment

The MS-DOS environment does not have the complexity of the other Windows
XP environmental subsystems. 1t is provided by a Win32 API application called
the virtual DOS machine (VDM). Since the VDM is a user-mode process, it is
paged and dispatched like any other Windows XP application. The VDM has
an instruction-execution unit to execute or emulate Intel 486 instructions.
The VDM also provides routines to emulate the MS-DOS ROM BIOS and
“int 21" software-interrupt services and has virtual device drivers for the screen,
keyboard, and communication ports. The VIOM is based on MS-DOS 5.0 source
code; it allocates at least 620 KB of memery to the application.

The Windows XP command shell is a program that creates a window that
looks like an MS-DOS environment. It can run both 16-bit and 32-bit executables.
When an MS-DOS application is run, the command shell starts a VDM process
to execute the program.

If Windows XP is running on a 1A32-compatible processor, MS-DOS graphical
applications run in full-screen mode, and character applications can run full
screen or in a window. Not all MS-DOS applications run under the VDM. For
example, some MS-DOS applications access the disk hardware directly, so they

788

Chapter 22

fail to run on Windows XP because disk access is restricted to protect the file
system. In general, MS-DOS applications that directly access hardware will fail
to operate under Windows XP.

Since MS-DOS is not a multitasking environment, some applications have
been written in such a way as to “hog” the CPU. For instance, the use of busy
loops can cause time delays or pauses in execution. The scheduler in the kernel
dispatcher detects such delays and automatically throttles the CPU usage, but
this may cause the offending application to operate incorrectly.

22.4.2 16-Bit Windows Environment

The Winlé execution envitonment is provided by a VDM that incorporates
additional software called Windows on Windows (WOW32 for 16-bit applica-
tions); this software provides the Windows 3.1 kernel routines and stub routines
for window-manager and graphical-device-interface (GDI) functions. The stub
routines call the appropriate Win32 APl subroutines—converting, or thunking,
16-bit addresses into 32-bit addresses. Applications that rely on the internal
structure of the 16-bit window manager or GDI may not work, because the
underlying Win32 APl implementation is, of course, different from true 16-bit
Windows.

WOW32 can multitask with other processes on Windows XD, but it resembles
Windows 3.1 in many ways. Only one Winl6 application can run at a time, all
applications are single threaded and reside in the same address space, and
all share the same input queue. These features imply that an application that
stops receiving input will block all the other Win16 applications, just as in
Windows 3.x, and one Winl6 application can crash other Win16 applications
by corrupting the address space. Multiple Win16 environments can coexist,
however, by using the command start /fseparate winléapplication from the
command line.

There are relatively few 16-bit applications that users need to continue to
run on Windows XP, but some of them include common installation (setup)
programs. Thus, the WOW32 environment continues to exist primarily because
a number of 32-bit applications cannot be installed on Windows XP without it.

22.4.3 32-Bit Windows Environment on 1A64

The native environment for Windows on 1A64 uses 64-bit addresses and the
native [A64 instruction set. To execute IA32 programs in this environment
requires a thunking laver to translate 32-bit Win32 APl calls into the correspond-
ing 64-bit calls—just as 16-bit applications require translation on 1432 systems.
Thus, 64-bit Windows supports the WOW64 environment. The implementations
of 32-bit and 64-bit Windows are essentially identical, and the 1A64 processor
provides direct execution of 1A32 instructions, so WOWe4 achieves a higher level
of compatibility than Wow32.

22.4.4 Win32 Environment

The main subsystem in Windows XP is the Win32 APT. It runs Win32 APl
applications and manages all keyboard, mcuse, and screen /0. Since it is
the controlling environment, it is designed to be extremely robust. Several
features of the Win3a2 API contribute to this robustness. Unlike processes in the

22.4 789

Winl6 environment, each Win32 process has its own input queue. The window
manager dispatches all input on the system to the appropriate process’s input
queue, so a failed process does not block input to other processes.

The Windows XP kernel also provides preemptive multitasking, which
enables the user to terminate applications that have failed or are no longer
needed. The Win32 API also validates all objects before using them, to prevent
crashes that could otherwise occur if an application tried to use an invalid or
wrong handle. The Win32 APl subsystem verifies the type of the object to which
a handle points before using the object. The reference counts kept by the object
manager prevent objects from being deleted while they are still being used and
prevent their use after they have been deleted.

To achieve a high level of compatibility with Windows 95/98 systems,
Windows XP allows users to specify that individual applications be run
using a shim layer, which modifies the Win32 APl to better approximate
the behavior expected by old applications. For example, some applications
expect to see a particular version of the system and fail on new versions.
Frequently, applications have latent bugs that become exposed due to changes
in the implementation. For example, using memory after freeing it may cause
corruption only if the order of memory reuse by the heap changes; or an
application may make assumptions about which errors can be returned by a
routine or about the number of valid bits in an address. Running an application
with the Windows 95/98 shims enabled causes the system to provide behavior
much closer to Windows 95/98—though with reduced performance and
limited interoperability with other applications.

22.4.5 POSIX Subsystem

The POSIX subsystem is designed to run POSIX applications written to foillow
the FOSIX standard, which is based on the UNIX medel. POSIX applications can
be started by the Win32 API subsystem or by another POSIX application. POSIX
applications use the POSIX subsystern server PSXS5.EXE, the POSIX dynamic
link library PSXDLL.DLL, and the POSIX console session manager POSTX . EXE.

Although the POSIX standard does not specify printing, POSIX applications
can use printers transparently via the Windows XP redirection mechanism.
POSIX applications have access to any file system on the Windows XP system;
the POSIX environment enforces UNIX-like permissicns on directory trees.

Due to scheduling issues, the POSIX system in Windows XP does not ship
with the system but is available separately for professional desktop systems
and servers. It provides a much higher level of compatibility with UNIX
applications than previous versions of NT. Of the commonly available UNIX
applications, most compile and run without change with the latest version of
Interix.

22.4.6 Logon and Security Subsystems

Before a user can access objects on Windows XD, that user must be authenticated
by the logon service, WINLOGON. WINLOGON 1is responsible for responding
to the secure attention sequence (Control-Alt-Delete). The secure attention
sequence is a required mechanism for keeping an application from acting
as a Trojan horse. Only WINLOGON can intercept this sequence in order to
put up a logon screen, change passwords, and lock the workstation. To be

790

22.5 -

Chapter 22

authenticated, a user must have an account and provide the password for
that account. Alternatively, a user logs on by using a smart card and personal
identification number, subject to the security policies in effect for the domain.

The Jocal security authority subsystem (LSASS) is the process that generates
access tokens to represent users on the system. Tt calls an authentication pack-
age to perform authentication using information from the logon subsystem
or network server. Typically, the authentication package simply looks up the
account information in a local database and checks to see that the password is
correct. The security subsystem then generates the access token for the user ID
containing the appropriate privileges, quota limils, and group IDs. Whenever
the user attempts to access an object in the system, such as by opening a handle
to the object, the access token is passed to the security reference monitor, which
checks privileges and quotas. The default authentication package for Windows
XTI domains is Kerberos. [SASS also has the responsibility for implementing
security policy such as strong passwords, for authenticating users, and for
performing encryption of daia and keys.

Historically, MS-DOS systems have used the file-allocation table (FAT) file
system. The 16-bit FAT file system has several shortcomings, including internal
fragmentation, a size limitation of 2 GB, and a lack of access protection fo files.
The 32-bit FAT file system has solved the size and fragmentation problems,
but its performance and features are still weak by comparison with modern
file systems. The NTFS file system is much better. 1t was designed to include
many features, including data recovery, security, fault tolerance, large files and
file systems, multiple data streams, UNICODE names, sparse files, encryption,
journaling, volume shadow copies, and file compression.

Windows XP uses NTFS as its basic file system, and we focus on it here.
Windows XP continues to use FATi6, however, to read floppies and other
removable media. And despite the advantages of NTFS, FAT32 continues to
be important for interoperability of media with Windows 95/98 systems.
Windows XP supports additional file-system types for the common formats
used for CD and DVD media.

22.5.1 NTFS internal Layout

The fundamental entity in NTFS is a volume. A volume is created by the
Windows XP logical-disk-management utility and is based on a logical disk
partition. A volume may occupy a portion of a disk, may occupy an entire
disk, or may span several disks.

NTFS does not deal with individual sectors of a disk but instead uses clusters
as the units of disk allocation. A cluster is a number of disk sectors that is a
power of 2. The cluster size is configured when an NTFS file system is formatted.
The defauit cluster size is the sector size for volumes up to 512 MB, 1 KB for
volumes up to 1 GB, 2 KB for volumes up tc 2 GB, and 4 KB for larger volumes.
This cluster size is much smaller than that for the 16-bit FAT file system, and
the small size reduces the amount of internal fragmentation. As an example,
consider a 1.6-GB disk with 16,000 files. If you use a FAT-16 file system, 400 MB

22,5 791

may be lost to internal fragmentation because the cluster size is 32 KB. Under
NTFS, only 17 MB would be lost when storing the same files.

NTFS uses logical cluster numbers (LCNs) as disk addresses. It assigns them
by numbering clusters from the beginning of the disk to the end. Using this
scheme, the system can caleulate a physical disk offset (inbytes) by multiplying
the LCN by the cluster size.

A file in NTFS is not a simple byte stream as it is in MS-DOS or UNJX; rather, it
ts a structured object consisting of typed attributes. Each attribute of a file is an
independent byte stream that can be crea ted, deleted, read, and written. Some
attribute types are standard for all files, including the file name (or names,
if the file has aliases, such as an Ms-DOS shortname), the creation time, and
the security descriptor that specifies access control. User data is stored in data
attributes.

Most traditional data files have an unnamed data attribute that contains all
the file’s data. However, additional data streams can be created with explicit
names. For instance, in Macintosh files stored on a Windows X¥ server, the
resource fork is a named data stream. The ['rop interfaces of the Component
Object Model (COM) use a named data stream to store properties on ordinary
files, including thumbnails of images. In general, attributes may be added as
necessary and are accessed using a file-name:attribute syntax. NTFS returns the
size of the unnamed attribute only in response to file-query operations, such
as when running the dir command.

Every file in NTFS is described by one or more records in an array stored in a
special file called the master file table (MFT). The size of a record is determined
when the file system is created; it ranges from 1 to 4 KB. Small attributes
are stored in the MFT record itself and are called resident attributes. Large
attributes, such as the unnamed bulk data, are called nonresident attributes
and are stored in one or more contiguous extents on the disk; a peinter te
each extent is stored in the MFT record. For a small file, even the data attribute
may fit inside the MFT record. if a file has many attributes—or if it is highly
fragmented, so that many pointers are needed to point to all the fragments
—-one record in the MFT might not be large enough. In this case, the file is
described by a record called the base file record, which contains pointers to
overflow records that hold the additional pointers and attributes.

Each file in an NTFS volume has a unique 1D called a file reference. The file
reference is a 64-bit quantity that censists of a 48-bit file number and a 16-bit
sequence number. The file number is the record number (that is, the array slot)
in the MFT that describes the file. The sequence number is incremented every
time an MF¥T entry is reused. The sequence number enables NTFS to perform
internal consistency checks, such as catching a stale reference to a deleted file
after the MFT entry has been reused for a new file.

22.5.1.1 NTFS B+ Tree

As in MS-DOS and UNIX, the NTFS namespace is organized as a hierarchy of
directories. Each directory uses a data structure called a B+ tree to store an
index of the file names in that directory. A B+ tree is used because it eliminates
the cost of reorganizing the tree and has the property that the length of every
path from the root of the tree to a leaf is the same. The index root of a directory
contains the top level of the B+ tree. For a large directory, this top level contains

792

Chapter 22

pointers to disk extents that hold the remainder of the tree. Each entry in the
directory contains the name and file reference of the file, as well as a copy of
the update timestamp and file size taken from the file’s resident attributes in
the MFT. Copies of this information are stored in the directory, so a directory
listing can be efficiently generated. Because all the file names, sizes, and update
times are available from the directory itself, there is no need to gather these
attributes from the MFT entries for each of the files.

22.5.1.2 NTFS Metadata

The NTFS volume’s metadata are all stored in files. The first file is the MFT. The
second file, which is used during recovery if the MFT is damaged, contains a
copy of the first 16 entries of the MFT. The next few files are also special in
purpose. They include the log file, volume file, attribute-definition table, root
directory, bitmap file, boot file, and bad-cluster file. We describe the role of
each of these files below.

The log file records all metadata updates to the file system.

The volume file contains the name of the volume, the version of NTFS that
formatted the volume, and a bit that tells whether the volume may have
been corrupted and needs to be checked for consistency.

The attribute-definition table indicates which attribute types are used in
the volume and what operations can be performed on each of them.

The root directory is the top-level directory in the file-system hierarchy.

The bitmap file indicates which clusters on a volume are allocated to files
and which are free.

The boot file contains the startup code for Windows XP and must be located
at a particular disk address so that it can be found easily by a simple RO
bootstrap loader. The boot file also contains the physical address of the
MFT.

The bad-cluster file keeps track of any bad areas on the volume; NTFS uses
this record for error recovery.

22.5.2 Recovery

In many simple file systems, a power failure at the wrong time can damage
the file-system data structures so severely that the entire volume is scrambled.
Many versions of UNIX store redundant metadata on the disk, and they recover
from crashes using the fsck program to check all the file-system data structures
and restore them forcibly to a consistent state. Restoring them often involves
deleting damaged files and freeing data clusters that had been written with user
data but not properly recorded in the file system’s metadata structures. This
checking can be a slow process and can cause the loss of significant amounts
of data. '

NTFS takes a different approach to file-system robustness. In NTFS, all file-
system data-structure updates are performed inside transactions. Before a data
structure is altered, the transaction writes a log record that contains rede and

22.5 793

undo information; after the data structure has been changed, the transaction
writes a commit record to the log to signify that the transaction succeeded.

After a crash, the system can restore the file-system data structures to
a consistent state by processing the log records, first redoing the operations
for committed transactions and then undoing the operations for transactions
that did not coramit successfully before the crash. Periodically (usually every
5 seconds), a checkpoint record is written to the log. The system does not
need log records prior to the checkpoint to recover from a crash. They can be
discarded, so the log file does not grow without bounds. The first time after
system startup that an NTFS volume is accessed, NTF5 automaticaily performs
file-system recovery.

This scheme does not guaraniee that all the user-file contents are correct
after a crash; it ensures only that the file-system data structures (the metadata
files) are undamaged and reflect some consistent state that existed prior to the
crash. It would be possible to extend the transaction scheme to cover user files,
and Microsoft may do so in the future.

The log is stored in the third metadata file at the beginning of the volume.
It is created with a fixed maximum size when the file system is formatted. 1t
has two sections: the logging area, which is a circular queue of log records,
and the restart area, which holds context information, such as the position in
the logging area where NTFS should start reading during a recovery. In fact,
the restart area holds two copies of its information, so recovery is still possible
if one copy is damaged during the crash. '

The logging functionality is provided by the Windows XP log-file service.
In addition to writing the log records and performing recovery actions, the
log-file service keeps track of the free space in the log file. If the free space
gets 1oo low, the log-file service queues pending transactions, and NTFS halts’
all new 1/0 operations. After the in-progress operations complete, NTFS calls
the cache manager to flush all data, then resets the log file and performs the
gqueued transactions.

disk 1 (2.5 GB) disk 2 (2.5 GB)

D disk C: {FAT} 2 GB

LCNs 128001-783381

D logical drive D: {(NTF3) 3 GB

LCNs 0128000

Figure 22.7 Volume set on two drives.

794

Chapter 22

22.5.3 Security

The security of an NTFS volume is derived from the Windows XP object model.
Each NTFS file references a security descriptor, which contains the access token
of the owner of the file, and an access-control list, which states the access
privileges granted to each user having access to the file.

In normal operation, NTFS does not enforce permissions on traversal
of directories in file path names. However, for compatibility with POSIX,
these checks can be enabled. Traversal checks are inherently mare expensive,
since modern parsing of file path names uses prefix matching rather than
component-by-component opening of directory names.

22.5.4 Volume Management and Fault Tolerance

FtDisk is the fault-tolerant disk driver for Windows XP. When instalied, it
provides several ways to combine multiple disk drives into one logical volume
0 as to improve performance, capacity, or reliability.

22.5.41 Volume Set

One way to combine multiple disks is to concatenate them logically to form
a large logical volume, as shown in Figure 22.7. In Windows XP, this logical
volume, called a volume set, can consist of up to 32 physical partitions. A
volume set that contains an NTFS volume can be extended without disturbance
of the data already stored in the file system. The bitmap metadata on the NTFS
volume are simply extended to cover the newly added space. NTFS continues
to use the same LCN mechanism that it uses for a single physical disk, and the
FtDisk driver supplies the mapping from a logical-volume offset to the offset
on one particular disk.

22.5.4.2 Stripe Set

Another way to combine multiple physical partitions is to interleave their
blocks in round-robin fashion to form what is called a stripe set, as shown in
Figure 22.8. This scheme is also called RAID level 0, or disk striping. FtDisk

disk 1 (2 GB) disk 2 {2 GB)
!{WW LCNs 0-15 | L.CNS 16-31
LCNs 3247 LCNs 48-63
LCNs 64-79 - LCNs 80-95

. { .

i logical drive C: 4 GB
]

Figure 22.8 Stripe set on two drives.

22,5 : B 795

disk 1 {2 GB) disk 2 {2 GB) disk 3 (2 GB)
[parity 0-15 || LONso-15 LCNs 16-31
}—' LCNs 32—-47 parity 16-31 LCNs 48-63
LCNs 64-79 .CNs 80-95 parity 3247
parity 48--63 LCNs 96—111 LCNs 112-127
- %
- L L] T » T
_

=

|
‘;J fogical drive C: 4 GB

Figure 22.9 Stripe set with parity on three drives.

uses a stripe size of 64 KB: The first 64 KB of the logical volume are stored in the
tirst physical partition, the second 64 KB in the second physical partition, and
so on, until each partition has contributed 64 KB of space. Then, the allocation
wraps around to the first disk, allocating the second 64-K8B block. A stripe set
forms one large logical volume, but the physical layout can improve the 1/0
bandwidth, because, for a large 1/0, all the disks can transfer data in parallel.

22.5.4.3 Stripe Set with Parity

A variation of this idea is the stripe set with parity, which is shown in Figure
22.9. This scheme is also called RAID level 5. Suppose that a stripe set has eight
disks. Seven of the disks will store data stripes, with one data stripe on each
disk, and the eighth disk will store a pa rity stripe for each data stripe. The parity
stripe contains the byte-wise exclusive or of the data stripes. If any one of the
eight stripes is destroyed, the system can reconstruct the data by calculating the
exclusive or of the remaining seven. This ability to reconstruct data makes
the disk array much less likely to lose data in case of a disk failure,

Notice that an update to one data stripe also requires recalculation of the
parity stripe. Seven concurrent writes to seven different data stripes thus would
also require updates to seven parity stripes, If the parity stripes were all on the
same disk, that disk could have seven times the 1 /O load of the data disks. To
avoid creating this bottleneck, we spread the parity stripes over all the disks by
assigning them in round-robin style. To build a stripe set with parity, we need
a munimum of three equal-sized partitions located on three separate disks.

22544 Disk Mirroring

An even more robust scheme is called disk mirroring or RAID level 1; it is
depicted in Figure 22.10. A mirror set comprises two equal-sized partitions
on two disks. When an application writes data to a mirror set, FtDisk writes
the data to both partitions, so that the data contents of the two partitions are
identical. If one partition fails, FtDisk has another copv safelv stored on the

796

Chapter 22

disk 1 (2 GB) disk 2 (2 GB)

drive C: 2 GB copy of drive C: 2 GB

Figure 22,10 Mirror set on two drives.

mirror, Mirror sets can also improve performance, because read requests can
be split between the two mirrors, giving each mirror half of the workload. To
protect against the failure of a disk controller, we can attach the two disks of a
mirror set to two separate disk controllers. This arrangement is called a duplex
set.

22.54.5 Sector Sparing and Cluster Remapping

To deal with disk sectors that go bad, FtDisk uses a hardware technique called
sector sparing, and NTFS uses a software technique called cluster remapping.
Sector sparing is a hardware capability provided by many disk drives. When
a disk drive is formatted, it creates a map from logical block numbers to good
sectors on the disk. It also leaves extra sectors unmapped, as spares. 1f a sector
fails, FtDisk instructs the disk drive to substitute a spare. Cluster remapping
is a software technique performed by the file system. If a disk block goes
bad, NTFS substitutes a different, unaliocated block by changing any affected
pointers in the MFT. NTFS also makes a note that the bad block should never be
allocated to any file.

When a disk block goes bad, the usual outcome is a data loss. But sector
sparing or cluster remapping can be combined with fault-tolerant volumes to
mask the failure of a disk block. If a read fails, the system reconstructs the
missing data by reading the mirror or by calculating the exclusive or parity
in a stripe set with parity. The reconstructed data are stored into a new location
that is obtained by sector sparing or cluster remapping,

22.5.5 Compression and Encryption

NTES can perform data compression on individual files or on all data files in
a directorv. To compress a file, NTFS divides the file’s data into compression

‘units, which are blocks of 16 contiguous clusters. When cach compression

22.5 : 797

unit is written, a data-compression algorithm is applied. If the result fits into
fewer than 16 clusters, the compressed version is stored. When reading, NT£S
can determine whether data have been compressed: If they have been, the
length of the stored compression unit is less than 16 clusters. To improve
performance when reading contiguous compression units, NTFS prefetches
and decompresses ahead of the application requests.

For sparse files or files that contain mostly zeros, NTFS uses another
technique to save space. Clusters that contain only zeros because they have
never been written are not actually allocated or stored on disk. Instead, gaps
are left in the sequence of virtual-cluster numbers stored in the MFT entry for
the file. When reading a file, if it finds a gap in the virtual-cluster numbers,
NTFS just zero-fills that portion of the caller’s buffer. This technique is also used
by UNIX.

NTFS supports encryption of files. Individual files or entire directories can
be specitied for encryption. The security system manages the keys used, and o
key-recovery service is available to retrieve lost kevs.

22.5.6 Mount Points

Mount points are a form of symbolic link specific to directories on NTFS. They
provide a mechanism for administrators to organize disk volumes that is more
flexible than the use of global names (like drive letters). Mount points are
implemented as a symbolic link with associated data that contain the true
volume name. Ultimately, mount points will supplant drive letters completely,
but there will be a long transition due to the dependence of many applications
on the drive-letter scheme.

22.5.7 Change Journal

NTFS keeps a journal describing all changes tha: have been made to the

file system. User-mode services can receive nofifications of changes to the

journal and then identify what files have changed, The content-indexing service
uses the change journal to identify files that need to be re-indexed. The file-

ieplication service uses it to identify files that need to be replicated across the

network.

22.5.8 Volume Shadow Copies

Windows XP implements the capability of bringing a volume to a known state
and then creating a shadow copy that can be used to back up a consistent view
of the volume. Making a shadow copy of a volume is a form of copy-on-write,
where blocks modified after the shadow copy is created have their original
contents stashed in the copy. To achieve a consistent state for the volume
requires the cooperation of applications, since the system cannot know when
the data used by the application are in a stable state from which the application
could be safely restarted.

The server version of Windows XP uses shadow copies to efficiently
maintain old versions of files stored on file servers. This allows users to see
documents stored on file servers as they existed at earlier points in time. The
user can use this feature to recover files that were accidentallv deleted or simpiy
to look at a previous version of the file, all without pulling out a backup tape.

22.6

Chapter 22 Window < WY
Networking

Windows XP supports both peer-to-peer and client-server networking. It
also has facilities for network management. The networking components in
windows XP provide data transport, interprocess communication, file sharing
across a network, and the ability to send print jobs to remote printers.

22.6.1 Network Interfaces

To describe networking in Windows XP, we must first mention two of the
internal networking interfaces: the network device interface specification
(NDIS) and the transport driver interface (TDI). The NDIS interface was
developed in 1989 by Microsoft and 3Com to separate network adapters from
transport protocols so that either could be changed without affecting the other.
NDIS resides at the interface between the data-link-control and media-access-
control layers in the OSI model and enables many protocols to operate over
many different network adapters. In terms of the OSI model, the TDL is the
interface between the transport layer (layer 4) and the session layer (layer
5). This interface enables any session-layer component to use any available
transport mechanism. (Similar reasoning led to the streams mechanism in
UNIX.) The TDI supports both connection-based and connectionless transport
and has functions to send any type of data.

22.6.2 Protocols

Windows XP implements transport protocols as drivers. These drivers can be
loaded and unloaded from the system dynamically, although in practice the
system typically has to be rebooted after a change. Windows XP comes with
several networking protocols. Next, we discuss a number of the protocols
supported in Windows XP to provide a variety of network functionality.

22.6.2.1 Server-Message Block

The server-message-block (SMB) protocol was first introduced in MS-DOS 3.1.
The system uses the protocol to send /O requests over the network. The
SMB protocol has four message types. The Session control messages are
commands that start and end a redirector connection to a shared resource at the
server. A redirector uses File messages to access files at the server. The system
uses Printer messages to send data to a remote print queue and to receive
back status information, and the Message message is used to comuunicate
with another workstation. The SMB protocol was published as the Common
Internet File System (CIFS) and is supported on a number of operating systems.

22.6.2.2 Network Basic Input/Output System

The network basic input/output system (NetBIOS) is a hardware-abstraction
interface for networks, analogous to the BIOS hardware-abstraction interface
devised for PCs running MS-DOS. NetBIOS, developed in the early 1980s,
has become a standard network-programming interface. NetBIOS is used to
establish logical names on the network, to establish logical connections, or
sessions, between two logical names on the network, and to support reliable
data transfer for a session via either NetBIOS or SMB requests.

22,6 Soteverkisneg 799

22.6.2.3 NetBIOS Extended User Interface

The NetBlOSextended user interface (NetBEUD was introduced by IBM in
1985 as a simple, efficient networking protocol for up to 254 machines. It is
the default protocol for Windows 95 peer networking and for Windows for
Workgroups. Windows XP uses NetBEUI when it wants to share resources with
these networks. Among the limitations of NetBEUI are that it uses the actual
name of a computer as the address and that it does not support routing.

726.2.4 Transmission Control Protocol/Internet Frotacol

The transmission control protocol/ Internet protocol (FCP/IP) suite that is used
on the Internet has become the de facto standard networking infrastructure.
Windows XP uses TCP/IP to connect to a wide variety of operating systems”
and hardware platforms. The Windows X TCP/IP package includes the simple
network-management protocol (SNM), dynamic host-configuration protocol
(DHCP), Windows Internet name service {WINS), and NetBIOS support.

22.6.2.5 Point-to-Point Tunneling Protocol

The point-to-point tunneling protocol (PPTP} is a protocol provided by
Windows XP to communicate between remote-access server modules running
on Windows XP server machines and other client systems that are connected
over the Internet. The remote-access servers can encrypt data sent over the
connection, and they support multi-protocol virtual private networks (VPNs)
overthe Internet.

22.6.2.6 Novell NetWare Protocols

The Novell NetWare protocols (IPX datagram service on the SPX transport layer)
are widely used for PC LANs. The Windows XP NWLink protocol connects
the NetBIOS to NetWare networks. In combination with a redirector (such
as Microsoft’s Client Service for NetWare or Novell's NetWare Client for
Windows), this protocol enables a Windows XP client to connect to a NetWare
server.

22.62.7 Web Distributed Authoring and Versioning Protocol

Web distributed authoring and versioning (WebDAV) is an http-based protocol
for collaborative authoring across the network. Windows XP builds a WebDAV
redirector into the file system. By building WebDAV support directly into the
file system, it can work with other features, such as encryption. Personal files
can now be stored securely in a public place.

22.6.2.8 AppleTalk Protocol

The AppleTalk protocol was designed as a low-cost connection by Apple to
allow Macintosh computers to share files. Windows XP systems can share files
and printers with Macintosh computers via AppleTalk if a Windows XT server
on the network is running the Windows Services for Macintosh package.

800

Chapter 22

22.6.3 Distributed-Processing Mechanisms

Although Windows XF is not a distributed operating system, it does support
distributed applications. Mechanisms that support distributed processing on
Windows XP include NetBIOS, named pipes and mailslots, Windows sockets,
RPCs, the Microsoft Interface Definition Language, and finally COM.

22.6.3.1 NetBIOS

In Windows XP, NetBIOS applications can communicate over the network using
NetBEUL, NWLink, or TCP/IP.

22.6.3.2 Named Pipes

Named pipes are a connection-oriented messaging mechanism. Named pipes
were originally developed as a high-level interface to NetBIOS connections over
the network. A process can also use named pipes to communicate with other
processes on the same machine. Since named pipes are accessed through the
file-system interface, the security mechanisms used for file objects also apply
to named pipes.

The name of a named pipe has a format called the uniform naming
convention (UNC). A UNC name looks like a typical remote file name, The
format of a UNC name is \\server name\share na me\x\y\z, where the
server name identifies a server on the network; a share name identifies any
resource that is made available to network users, such as directories, files,
named pipes, and printers; and the \x\y\z part is a normal file path name.

22.6.3.3 Mailslots

Mailslots are a connectionless messaging mechanism. They are unreliable
when accessed across the network, in that a message sent to a mailslot may be
lost before the intended recipient receives it. Mailslots are used for broadcast
applications, such as finding components on the network; they are also used
by the Windows computer browser service.

22.6.3.4 Winsock

Winsock is the Windows XP sockets APL. Winsock is a session-layer interface
that is largely compatible with UNIX sockets but has some added Windows xp
extensions. It provides a standardized interface to many transport protocols
that may have different addressing schemes, so that any Winsock application
can run on any Winsock-compliant protocol stack.

22.6.3.5 Remote Procedure Calls

A remote procedure call (RPC) is a client—server mechanism that enables an
application on one machine to make a procedure call to code on another
machine. The client calls a local procedure—a stub routine—that packs its
arguments into a message and sends them across the network to a particular
server process. The client-side stub routine then blocks. Meanwhile, the server
unpacks the message, calls the procedure, packs the return results into a
message, and sends them back to the client stub. The client stub unblocks,
receives the message, unpacks the results of the RPC, and returns them to

226 . . 801

the caller. This packing of arguments is sometimes called marshalling, The
Windows X RPC mechanism follows the widely used distributed-computing-
environment standard for RPC messages, 50 programs written to use Windows
XP RPCs are highly portable. The RPC standard is detailed. It hides many of the
architectural differences among computers, such as the sizes of binary numbers
and the order of bytes and bits in computer words, by specifying standard data
formats for RPC messages.

Windows XP can send RPC messages using NetBIOS, or Winsock on TCP/IP
networks, or named pipes on LAN Manager networks. The LPC facility,
discussed earlier, is similar to RPC, except that in the case of LPC the messages
are passed between two processes running on the same computer.

22.6.3.6 Microsoft Interface Definition Language

It is tedious and error-prone to write the code to marshal and transmit
arguments in the standard format, to unmarshal and execute the remote
procedure, to marshal and send the return results, and to unmarshal and return
them to the caller. Fortunately, however, much of this code can be generated
automatically from a simple description of the arguments and return results.

Windows XP provides the Microsoft Interface Definition Language to
describe the remote procedure names, arguments, and results. The compiler
for this language generates header files that declare the stubs for the remote
procedures, as well as the data types for the argument and return-value
messages. It also generates source code for the stub routines used at the client
side and for an unmarshaller and dispatcher at the server side. When the
application is linked, the stub routines are included. When the application
executes the RPC stub, the generated code handles the rest.

22.6.3.7 Component Object Model

The component object moedel (COM) is a mechanism for interprocess commu-
nication that was developed for Windows. COM objects provide a well-defined
interface to manipulate the data in the object. For instance, COM is the infras-
tructure used by Microsoft’s object linking and embedding (OLE) technology
for inserting spreadsheets into Microsoft Word documents. Windows XP has a
distributed extension called DCOM that can be used over a network utilizing
RPC to provide a transparent method of developing distributed applications.

22.6.4 Redirectors and Servers

In Windows XP, an application can use the Windows XP 170 API to access files
from a remote computer as though they were local, provided that the remote
computer is running a CIFS server, such as is provided by Windows XP or
earlier Windows systems. A redirector is the client-side object that forwards /0
requests to remote files, where they are satisfied by a server. For performance
and security, the redirectors and servers run in kernel mode.

In more detail, access to a remote file occurs as follows:

. The application calls the I/0 manager to request that a file be opened with
a file name in the standard UNC format.

802

Chapter 22 Vim0

> The 1/O manager builds an 1/0 request packet, as described in Section
22.3.35.

The 1;0 manager recognizes that the access is for a remote file and calls a
driver called a multiple universal-naming- convention provider (MUP).

The MUP sends the 1/0 request packet asynchronously to all registered
redirectors.

A redirector that can satisfy the reguest responds to the MUR. To avoid
asking all the redirectors the same question in the future, the MUP uses a
cache to remember which redirector can handle this file,

The redirector sends the network request to the remote system.

The remote-system network drivers receive the request and pass it to the
server driver.

f The server driver hands the request to the proper local file-system driver.
4. The proper device driver is called to access the data.

4, The results are returned to the server driver, which sends the data back
to the requesting redirector. The redirector then returns the data to the
calling application via the I;O manager.

A similar process occurs for applications that use the Win32 API network
AP, rather than the UNC services, except that a module called a multi-provider
router is used instead of a MUP.

For portability, redirectors and servers use the TDI API for network
transport. The requests themselves are expressed in a higher-level protocol,
which by default is the SMB protocol mentioned in Section 22.6.2. The list of
redirectors is maintained in the system registry database.

22.6.4.1 Distributed File System

The UNC names are not always convenient, because multiple file servers may
be available to serve the same content, and UNC names explicitly include the
name of the server. Windows XP supports a distributed file system (DFS)
protocol that allows a network administrator to serve up files from multiple
servers using a single distributed name space.

22.6.4.2 Folder Redirection and Client-Side Caching

To improve the PC experience for business users who frequently switch among
computers, Windows XF allows administrators to give users reaming profiles,
which keep users preferences and other settings on servers. Folder redirection
is then used to automatically store a user’s documents and other files on a
server. This works well until one of the computers is no longer attached to
the network, such as a laptop on an airplane. To give users off-line access to
their redirected files, Windows XP uses client-side caching (CSC). CSC is used
when the computer is online to keep copies of the server files on the local
machine for better performance. The files are pushed up to the server as they
are changed. If the computer becomes disconnected, the files are stilt available,

22,6 oiworking 803

and the update of the server is deferred until the next time the computer is
online with a suitably performing network link.

22.6.5 Domains

Many networked environments have natural groups of users, such as students
in a computer laboratory at school or employees in one department in a
business. Frequently, we want all the members of the group to be able to
access shared resources on their various computers in the group. To manage
the global access rights within such groups, Windows XP uses the concept of
a domain. Previously, these domains had no relationship whatsoever to the
domain-name system (DNS) that maps Internet host names to IP addresses.
Now, however, they are closely related.

Specifically, a Windows XP domain is a group of Windows XP workstations
and servers that share a common security policy and user database. Since
Windows XP now uses the Kerberos protocol for trust and authentication, a
Windows X’ domain is the same thing as a Kerberos realm. Previous versions
of NT used the idea of primary and backup domain controllers; now all servers
in a domain are domain controllers. In addition, previous versions required
the setup of one-way trusts between domains. Windows XP uses hierarchical
approach based on DNS and allows transitive trusts that can flow up and
down the hierarchy. This approach reduces the number of trusts required for
n domains from 7 * (1 — 1) to O(n). The workstations in the domain trust the
domain controller to give correct information about the access rights of each
user (via the user’s access token). All users retain the ability to restrict access
to their own workstations, no matter what any domain controller may say.

- 22.6.51 Domain Trees and Forests

Because a business may have many departments and a school may have
many classes, it is often necessary to manage muitiple domains within a
single organization. A domain tree is a contiguous DNS naming hierarchy
for managing multiple domains. For example, bell-labs.com might be the root of
the tree, with research.bell-labs.com and pez.bell-labs.com as children—~domains
research and pez. A forest is a set of noncontiguous names. An example would
be the trees bell-labs.com and/or Iicent.com. A forest may be made up of only
one demain tree, however.

22.6.5.2 Trust Relationships

Trust relationships may be set up between domains in three ways: one-way,
transitive, and cross-link. Versions of NT through 4.0 allowed only one-way
trusts. A one-way trust is exactly what its name implies: Domain A is told it
can trust domain B. However, B will not trust A unless another relationship is
configured. Under a transitive trust, if A trusts B and B trusts C, then A, B, and
C all trust one another, since transitive trusts are two-way by default. Transitive
trusts are enabled by default for new domains in a tree and can be configured
only among domains within a forest. The third type, a cross-link trust, is useful
to cut down on authentication traffic. Suppose that domains A and B are leaf
nodes and that users in A often use resources in B. If a standard transitive trust
is used, authentication requests must traverse up to the common ancestor of

804

22.7

Chapter 22

the two leaf nodes; but if A and B have a cross-linking trust established, the
authentications are sent directly to the other node.

22.6.8 Active Directory

Active Directory is the Windows XI implementation of lightweight directory-
access protocol (LDAP) services. Active Directory stores the topology infor-
matjon about the domain, keeps the domain-based user and group accounts
and passwords, and provides a domain-based store for technologies like group
policies and intellimirror,

Administrators use group policies to establish standards for desktop
preferences and software. For many corporate information-technology groups,
uniformity drastically reduces the cost of computing. Intellimirror is used in
conjunction with group policies to specify what software should be available to
each class of user, even automatically installing it on demand from a corporate
server.

22.6.7 Name Resolution in TCP/IP Networks

On an 1P network, name resolution is the process of converting a computer
name to an iP address, such as resolving wumw.bell-labs.com to 135.104.1.14.
Windows XP provides several methods of name resolution, including Win-
dows Internet name service (WINS), broadcast-name resolution, domain-name
system (DNS), a hosts file, and an LMHOSTS file. Most of these methods are used
by many operating systems, so we describe only WINS here.

Under WINS, two or more WINS servers maintain a dynamic database of
name-to-IP address bindings, along with client software to query the servers.
At least two servers are used, so that the WINS service can survive a server
failure and so that the name-resolution workload can be spread over multiple
machines.

WINS uses the dynamic host-configuration protocel (DHCP). DHCP updates
address configurations automatically in the WINS database, without user
or administrator intervention, as follows. When a DHCP client starts up, it
broadcasts 2 discover message. Each DHCD server that receives the message
replies with an of fer message that contains an 17 address and configuration
information for the client. The client chooses one of the configurations and
sends a request message to the selected DHCP server. The DHCT server
responds with the IP address and configuration information it gave previously
and with a lease for that address. The lease gives the client the right to use the
I? address for a specified period of time. When the lease time is half expired, the
client attempts to renew the lease for the address. If the lease is not renewed,
the client must obtain a new one.

The Win32 APl is the fundamental interface to the capabilities of Windows
XP. This section describes five main aspects of the Win32 API: access to
kernel objects, sharing of objects between processes, process management,
interprocess communication, and memory management,

227 805

22.7.1 Access to Kernel Objects

The Windows XP kernel provides many services that application programs
can use. Application programs obtain these services bv manipulating ker-
nel objects. A process gains access to a kernel object named XXX by calling
the CreateXXX function to open a handle to XXX. This handle is unique to
the process. Depending on which object is being opened, if the Create()
function fails, it may return 0, or it may return a special constant named
INVALID HANDLE_VALUE. A process can close any handle by calling the Close-
Handle(} function, and the system may delete the object if the count of
processes using the object drops to (1.

22.7.2 Sharing Objects Between Processes

Windows XI' provides three ways to share objects between processes. The first
way is for a child process to inherit a handle to the object. When the parent
calls the CreateXXX function, the parent supplies a SECURITIES ATTRIBUTES
‘structure with the bInheritHandle field set to TRUE. This field creates an
inheritable handle, Next, the child process is created, passing a value of TRUE
to the CreateProcess () function’s bInheritHandle argument. Figure 22.11
shows a code sample that creates a semaphore handle inherited by a child
process.

Assuming the child process knows which handles are shared, the parent
and child can achieve interprocess communication through the shared objects.
In the example in Figure 22.11, the child process gets the value of the handle
from the first command-line argument and then shares the semaphore with
the parent process.

The second way to share objects is for one process lo give the object a name
when the object is created and for the second process to open the narne. This
method has two drawbacks: Windows XP does not provide a way to check
whether an object with the chosen name already exists, and the object name
space is global, without regard to the object type. For instance, two applications
may create an object named pipe when two distinct—and possibly different—
obiects are desired.

Named objects have the advantage that unrelated processes can readily
share them. The first process cails one of the CreateXXX functions and supplies
a name in the 1pszName pararneter. The second process gets a handle to share

SECURITY ATTRIBUTES =a;

sa.nlength = zizecf(sa);

gsa.lpSecurityDescriptor = NULL;

gsa.bInheritHandle = TRUE;

Handle a.semaphore = CreateSemavhore({&sa, 1, 1, NULL);

char comand_line{132];

ostrstream ostring (command.line, sizecf (command line)});

ostring << a_semaphcre << ends;

CreateProcess ("another process.exe", command_line,
NULL, NULIL, TRUE, . . .};

Figure 22.11 Code enabling a child to share :an object by inheriting a handle.

806

Chapter 22 vic dew < XP
// Process A

HANDLE a._semaphore = CreateSemaphore (NULL, 1, 1, "MySEM1");

// Process B

HANDLE b_semaphore = OpenSemaphore (SEMAPHORE ALL ACCESS,
FALSE, "MySEM1"};

Figure 22.12 Code for sharing an object by name lookup.

the object by calling OpenXXX () {or CreateXXX) with the same name, as shown
in the example of Figure 22.12.

The third way to share objects is via the DuplicateHandle() function.
This method requires some other method of interprocess communication to
pass the duplicated handle. Given a handle to a process and the value of a’
handle within that process, a second process can get a handle to the same
object and thus share it. An example of this method is shown in Figure 22.13.

22.7.3 Process Management

In Windows XP, a process is an executing instance of an application, and
a thread is a unit of code that can be scheduled by the operating system.
Thus, a process contains one or more threads. A process is started when
some other process calls the CreateProcess() routine. This routine loads
any dynamiic link libraries used by the process and creates a primary thread.

// Process A wants to give Process B access tc a semaphore

// Process A

HANDLE a_semaphore = CreateSemaphore (NULL, 1, 1, NULL);
// send the value cof the semaphore to Process B

// using a message or shared memory object

// Process B

HANDLE process.a = OpenProcess (PROCESS ALL ACCESS, FALSE,
process id of A);

HANDLE b_semaphore;

DuplicateHandle (process.a, a-semaphore,
GetCurrentProcesss (), &b_semaphore,
0, FALSE, DUPLICATE SAME ACCESS);

// use b_semaphore to access the semaphore

Figure 22.13 Code for sharing an object by passing a handile.

227 eopnannnct inderiade 807

Additional threads can be created by the CreateThread() function. Each
thread is created with its own stack, which defaults to 1 MB unless specified
otherwise in an argument to CreateThread(). Because some C run-time
functions maintain state in static variables, such as errno, a multithread
application needs to guard against unsynchronized access. The wrapper
function beginthreadex () provides appropriate synchronization.

22.7.3.1 Instance Handles

Every dynamic link library or executable file loaded into the address space of
a process is identified by an instance handle. The value of the instance handle
is actually the virtual address where the file is loaded. An application can get
the handie to a module in its address space by passing the name of the module
to GetModuleHandle(). If NULL is passed as the name, the base address of
the process is returned. The lowest 64 KB of the address space are not used,
so a faulty program that tries to de-reference a NULL pointer gets an access
violation.

Priorities in the Win32 API environment are based on the Windows XP
scheduling model, but not all priority values may be chosen. Win32 ATl uses
four priority classes:

). IDLE_PRIORITY_CLASS (priority level 4)

+. NORMAL.PRIORITY_CLASS (priority level 8)

% HIGH.PRIORITY_CLASS (priority level 13)

J. REALTIME PRIORITY_CLASS {priority level 24)

Processes are typically members of the NORMAL_PRIORITY CLASS unless the
parent of the process was of the IDLE_PRIORITY_CLASS or another class was
specified when CreateProcess was called. The priority class of a process
can be changed with the SetPriorityClass() function or by passing of
an argument to the START command. For example, the command START
/REALTIME cbserver.exe would run the cbserver program in the REAL-
TIME.PRIORITY CLASS. Only users with the incredse scheduling priority privilege
can move a process into the REALTIME_PRIORITY_CLASS. Administrators and
power users have this privilege by default.

22.7.3.2 Scheduling Rule

When a user is running an interactive program, the system needs to provide
especially good performance for the process. For this reason, Windows XP has a
special scheduling rule for processes in the NORMAL_PRIORITY CLASS. Windows
XP distinguishes between the foreground process that is currently selected on
the screen and the background processes that are not currently selected. When
a process moves into the foreground, Windows XP increases the scheduling
quantum by some factor—typically by 3. (This factor can be changed via the
performance option in the system section of the control panel.} This increase
gives the foreground process three times longer to run before a time-sharing
preemption occurs.

808

Chapter 22

22.7.3.3 Thread Priorities

A thread starts with an initial priority determined by its class. The priority
can be altered by the SetThreadPriority () function. This function takes an
argument that specifies a priority relative to the base priority of its class:

THREAD PRIORITY LOWEST: base — 2
THREAD _PRIGRITY BELOW NORMAL: base — 1|
THREAD PRIDRITY NORMAL: base + 0
THREAD PRIORITY_ABOVE_NORMAL: base + 1
THHREAD PRIORITY HIGHEST: base + 2

Two other designations are also used to adjust the priority. Recall from
Section 22.3.2.1 that the kernel has two priority classes: 16-31 for the real-
time class and 0-15 for the variable-priority class. THREAD PRTORITY_IDLE sets
the priority to 16 for real-time threads and to 1 for variable-priority threads.
THREAD. PRIORITY TIME_CRITICAL sets the priority to 31 for real-time threads
and to 15 for variable-priority threads.

As we discussed in Section 22.3.2.1, the kernel adjusts the priority of a
thread dynamically depending on whether the thread is 1/0 bound or CPL
bound. The Win32 API provides a method to disable this adjustment via
SetProcessPriorityBoost() and SetThreadPriorityBoost () functions.

22.7.3.4 Thread Synchronization

A thread can be created in a suspended state; the thread does not execute
until another thread makes it eligible via the ResumeThread(} function, The
SuspendThread () function does the opposite. These functions set a counter,
so if a thread is suspended twice, it must be resumed twice before it can run,
To synchronize the concurrent access to shared objects by threads, the kernel
provides synchronization objects, such as semaphores and mutexes.

In addition, synchronization of threads can be achieved by use of the Wait-
For3ingledbject () and WaitForMultipleObjects() functions. Another
method of synchronization in the Win32 API is the critical section. A critical
sectionisa synchronized region of code that can be executed by only one thread
at a time. A thread establishes a critical section by calling InitializeCrit-
icalSection(). The application must call EnterCriticalSection() before
entering the critical section and LeaveCriticalSection() after exiting the
critical section. These two routines guarantee that, if multiple threads attempt
toenter the critical section concurrently, only one thread ata time will be permit-
ted to proceed; the others will wait in the EnterCriticalSection() routine.
The critical-section mechanism is faster than using kernel-synchronization
objects because it does not allocate kernel objects until it first encounters
contention for the critical section.

22.73.5 Fibers

A fiber is user-mode code that is scheduled according to a user-defined
scheduling algorithm. A process may have multiple fibers in it, just as it may

22.7 809

have multiple threads. A major ditference between threads and fibers is that
whereas threads can execute concurrently, only one fiber at a time is permitted
to execute, even on multiprocessor hardware. This mechanism is included in
Windows XP to facilitate the porting of those legacy UNIX applications that
were written for a fiber-execution model.

The system creates a fiber by calling either ConvertThreadToFiber()
or CreateFiber(). The primary difference between these functions is that
CreateFiber () does not begin executing the fiber that was created. To begin
execution, the application must call SwitchToFiber(). The appitcation can
terminate a fiber by calling DeleteFiber().

22.7.3.6 Thread Pool

Repeated creation and deletion of threads can be expensive for applications
and services that perform small amounts of work in each. The thread pool
provides user-mode programs with three services: a queue t¢ which work
requests may be submitted (via the QueneUserWorkItem()} API), an API that
can be used to bind callbacks to waitable handles (RegisterWaitForSin-
gleObject (}), and APIs to bind callbacks to timeouts (CreateTimerQueue()
and CreateTimerQueueTimer(}).

The thread pool’s goal is to increase performance. Threads are relatively
expensive, and a processor can only be executing one thing at a time no matter
how many threads are used. The thread pool attempts to reduce the number of
outstanding threads by slightly delaying work requests (reusing each thread
for many requests) while providing encugh threads to effectively utilize the
machine’s CPUs. The wait and timer-callback APls allow the thread pool to
further reduce the number ¢f threads in a process, using far tewer threads than
would be necessary if a process were to devote one thread to servicing each
waitable handle or timeout.

22.7.4 Interprocess Communication

Win32 APT applications handle interprocess communication in several ways.
One way 1s by sharing kernel objects. Another way is by passing messages,
an approach that is particularly popular for Windows GUI applications. One
thread can send a message to another thread or to a window by calling
PostMessage (), PostThreadMessage (), SendMessage (), SendThreadMes-
sage(), or SendMessageCallback{). The difference between posting a mes-
sage and sending a message is that the post routines are asynchronous: They
return immediately, and the calling thread does not know when the message
15 actually delivered. The send routines are synchronous: They block the caller
until the message has been delivered and processed.

In addition to sending a message, a thread can send data with the message.
Since processes have separate address spaces, the data must be copied. The
system copies data by calling SendMessage() to send a message of type
WM_COPYDATA with a COPYDATASTRUCT data structure that contains the length
and address of the data to be transferred. When the message is sent, Windows
XP copies the data to a new block of memory and gives the virtual address of
the new block to the receiving process.

Unlike threads in the 16-bit Windows environment, every Win32 AP1 thread
has its own input queue from which it receives messages. (All input is received

810

Chapter 22 Windows 3¢

// allocate 16 MB at the top of our address space .

void *buf = VirtualAlloc(0, 0x1C00000, MEM.RESERVE | MEM_TOP.DOWH,
PAGE.READWRITE) ;

// commit the upper 8 MB of the allccated space

VirtualAlloc{buf + 0x800000, OxBOpOOO, MEM_COMMIT, PAGE_READWRITE) ;

// do something with the memory

// now decommit the memory

VirtualFree (buf + ¢x800000, 0x800000, MEMDECOMMIT) ;
// release all of the allocated address space
VirtualFree {buf, 0, MEM.RELEASE]};

Figure 22.14 Code fragments for allocating virtual memory.

via messages.) This structure is more reliable than the shared input queue of
16-bit Windows, because, with separate queues, it is no longer possible for
one stuck application to block input to the other applications. If a Win32 API
application does not call GetMessage () to handle events oniits input queue, the
queue fills up; and after about five seconds, the system marks the application
as “Not Responding’.

22.7.5 Memory Management

The Win32 API provides several ways for an application to use memory: virtual
memory, memory-mapped files, heaps, and thread-local storage.

22.7.5.1 Virtual Memory

Anapplication calls Virtualalloc () to reserve or commit virtual memory and
VirtualFree() to decommit or release the memory. These functions enable
the application to specify the virtual address at which the memory is allocated.
They operate on multiples of the memory page size, and the starting address of
an allocated region must be greater than 0x10000. Examples of these functions
appear in Figure 22.14.

A process may lock some of its committed pages into physical memory
by calling VirtualLock(). The maximum number of pages a process can lock
is 30, unless the process first calls SetProcessWorkingSetSize () to increase
the maximum working-set size.

22.7.5.2 Memory-Mapping Files

Another way for an application to use memory is by memory-mapping a file
into its address space. Memory mapping is also a convenient way for two
processes to share memory: Both processes map the same file into their virtual
memory. Memory mapping is a multistage process, as you can see in the
example in Figure 22.15.

If a process wants to map some address space just to share a memory
region with another process, no file is needed. The process calls Create-
FileMapping() with a file handle of Oxf£fff££f and a particular size. The
resulting file-mapping object can be shared by inheritance, by name lookup, or
by duplication.

22,7 Progravuner interlace 811

// cpen the file or create it if it does not exist

HANDLE hfile = CreateFile("somefile", GENERIC READ 1 GENERICMWRITE,
FILE_SHARE READ | FILE_SHARE WRITE, NULL,
OPEN_ALWAYS, FILEATTRIBUTENORMAL, NULL} :

// create the file mapping 8 MB in size

HANDLE hmap = CreateFileMapping (hfile, PAGE.READWRITE,
SEC.COMMIT, 0, 0x8Q0000, "SHM.1");

// now get a view of the space mapped

void *buf = MapViewCfFile(hmap, FILEMAP ALLACCESS,
g, 0, 0, 0x800000);

// do something with the mapped file

// now unmap the file
UnMapViewOfFile (buf);
CloseHandle (hmap) ;
CloseHandle (hfile);

Figure 22.15 Code fragments for memory mapping of a file.

22.7.5.3 Heaps

Heaps provide a third way for applications to use memory. A heap in the Win32
environment is a region of reserved address space. When a Win32 API process
is initialized, it is created with a 1-MB default heap. Since many Win32 API
functions use the default heap, access to the heap is synchronized to protect
the heap’s space-allocation data structures from being damaged by concurrent
updates by multiple threads.

Win32 APl provides several heap-management functions so that a
process can allocate and manage a private heap. These functions are
HeapCreate(), HeapAlloc(), HeapRealloc(), HeapSize(), HeapFree(),
and HeapDestroy(). The Win32 APl also provides the HeapLock() and
HeapUnlock() functions to enable a thread to gain exclusive access to a heap.
Unlike VirtualLock ()}, these functions perform only synchronization; they
do not lock pages into physical memory.

22.7.5.4 Thread-Local Storage

The fourth way for applications to use memory is through a thread-local
storage mechanism. Functions that rely on global or static data typically fail
to work properly in a multithreaded environment. For instance, the C run-
time function strtok() uses a static variable to keep track of its current
position while parsing a string. For two concurrent threadstoexecute strtok ()
correctly, they need separate current position variables. The thread-local storage
mechanism allocates global storage on a per-thread basis. It provides both
dynamic and static methods of creating thread-local storage. The dynamic
method is illustrated in Figure 22.16.

To use a thread-local static variable, the application declares the variable
as follows to ensure that every thread has its own private copy:

..declspec(thread) DWORD cur_pos = 0;

B12

22.8

Chapter 22

// reserve a slot for a variable
DWORD var_index = TisAllcc();

// set it to the value 10
TlsSetValue (var.index, 10);

// get the value

int var TlsGetValue (var_index) ;
// release the index

TlsFree (var_index) ;

Figure 22.16 Code for dynamic thread-local storage.

Microsoft designed Windows XP to be an extensible, portable operating system
——one able to take advantage of new techniques and hardware. Windows XP
supports multiple operating environments and symmetric multiprocessing,
including both 32-bit and 64-bit processors and NUMA cemputers. The use of
kernel objects to provide basic services, along with support for client-server
computing, enables Windows XP to support a wide variety of application
environments. For instance, Windows XP can run programs compiled for
MS5-DOS, Windowsle, Windows 95, Windows XP, and POSIX. It provides
virtual memory, integrated caching, and preemptive scheduling. Windcws Xp
supports a security model stronger than those of previous Microsoft operating
systems and includes internationalization features. Windows XP runs on a
wide variety of computers, so users can choose and upgrade hardware to
match their budgets and performance requirements without needing to alter
the applications they run.

22.1 Under what circumstances would one use the deferred procedure calls
facility in Windows Xp?

22.2 What is a handle, and how does a process obtain a handle?

22.3 Describe a useful application of the no-access page facility provided in
Windows XT.

22.4 The 1A64 processors contain registers that can be used to address a
64-bit address space. However, Windows XP limits the address space of
user programs to 8 TB, which corresponds to 43 bits” worth. Why was
this decision made?

22.5 What manages cache in Windows X? How is cache managed?

226 What is the purpose of the Winlé execution environment? What
limitations are imposed on the programs executing inside this environ-
ment? What are the protection guarantees provided between different
applications executing inside the Windows16 environment? What are

813

the protection guarantees provided between an application executing
inside the Windows16 environment and a 32-bit application?

22.7 How does the NTES directory structure differ from the directory
structure used in Unix operating systems?

22.8 What is a process, and how is it managed in Windows x?

229 What is the fiber abstraction provided by Windows XP? How does it
differ from the threads abstraction?

Solomon and Russinovich [2000] give an overview of Windows XP and
considerable technical detail about system internals and components. Tate
[2000] is a good reference on using Windows XP. The Microsoft Windows Xp
Server Resource Kit (Microsoft [2000b]} is a six-volume set helpful for using and
deploying Windows XP. The Microsoft Developer Network Library (Microsoft
[2000a]}, issued quarterly, supplies a wealth of information on Windows Xp
and other Microsoft products.

Iseminger [2000] provides a good reference on the Windows xP Active
Directory. Richter [1997] gives a detailed discussion on writing programs that
use the Win32 APL Silberschatz et al. [2001] contains a good discussion of B+
trees.

W

231

CHAPTER

i

PR R A R

Now that you understand the fundamental concepts of operating systems (CPU
scheduling, memory management, processes, and so on), we are in a position
to examine how these concepts have been applied in several older and highly
influential operating systems. Some of them (such as the XD5-940 and the THE
system) were one-of-a-kind systems; others (such as 05/360) are widely used.
The order of presentation highlights the similarities and differences of the
systems; it is not strictly chronological or ordered by importance. The serious
student of operating systems should be familiar with all these systems.

As we describe early systems, we include references to further reading.
The papers, written by the designers of the systems, are important both for
their technical content and for their style and flavor.

Early computers were physically enormous machines run from a console. The
programmer, who was also the operator of the computer system, would write
a program and then would operate the program directly from the operator’s
console. First, the program would be loaded manually into memory from the
front panel switches (one instruction at a time), from paper tape, or from
punched cards. Then, the appropriate buttons would be pushed to set the
starting address and to start the execution of the program. As the program ran,
the programmer/operator could monitor its execution by the display lights on
the console. If errors were discovered, the programmer could halt the program,
examine the contents of memory and registers, and debug the program directly
from the console. Output was printed or was punched onto paper tape or cards

_ for later printing.

23.1.1 Dedicated Computer Systems

As time went on, additional software and hardware were developed. Card
readers, line printers, and magnetic tape became commonplace. Assemblers,
loaders, and linkers were designed to ease the prog.amming task. Libraries
of common functions were created. Common functions could then be copied

815

816

Chapter 23

into a new program without having to be written again, providing software
reusability.

The routines that performed 1/0 were especially important. Each new 1/0
device had its own characteristics, requiring careful programrning. A special
subroutine—called a device driver—was written for each 1/0 device. A device
driver knows how the buffers, flags, registers, control bits, and status bits for
a particular device should be used. Each type of device has its own driver.
A simple task, such as reading a character from a paper-tape reader, might
involve complex sequences of device-specific operations. Rather than writing
the necessary code every time, the device driver was simply used from the
library.

Later, compilers for FORTRAN, COBOL, and other languages appeared,
making the programming task much easier but the operation of the computer
more complex. To prepare a FORTRAN program for execution, for example,
the programmer would first need to load the FORTRAN compiler into the
computer. The compiler was normaily kept on magnetic tape, so the proper
tape would need to be mounted on a tape drive. The program would be read
through the card reader and written onto another tape. The FORTRAN compiler
produced assembly-language output, which then needed to be assembled. This
procedure required mounting another tape with the assembler. The output of
the assembler would need to be linked to supporting library routines. Finally,
the binary object form of the program would be ready to execute. It could be
loaded into memory and debugged from the console, as before.

A significant amount of set-up time could be involved in the running of a
job. Each job consisted of many separate steps:

Loading the FORTRAN compiler tape
Running the compiler

Unloading the compiler tape
Loading the assembler tape
Running the assembler

tnloading the assembler tape
Loading the object program

Running the object program

If an error occurred during any step, the programmer/operator might have
to start over at the beginning. Each job step might involve the loading and
unloading of magnetic tapes, paper tapes, and punch cards.

The job set-up time was a real problem. While tapes were being mounted
or the programmer was operating the console, the CPU sat idle. Remember that,
in the early davs, few computers were available, and they were expensive. A
computer might have cost millions of dollars, not including the overational
costs of power, cooling, programmers, and so on. Thus, computer time was
extremely valuable, and owners wanted their computers to be used as much
as possible. They needed high utilization to get as much as they could from
their investments.

23.1 817

23.1.2 Shared mputer Systems

The solution was two-fold. First, a professional computer operator was hired.
The programmer ne longer operated the machine. As soon as one job was
finished, the operator could start the next. Since the operator had more
experience with mounting tapes than a programumer, set-up time was reduced.
The programmer provided whatever cards or tapes were needed, as well as a
short description of how the job was to be run. Of course, the operator could
not debug an incorrect program at the console, since the operator would not
understand the program. Therefore, in the case of program error, a dump of
memory and registers was taken, and the programmer had to debug from the
dump. Dumping the memory and registers allowed the operator to continue
immediately with the next job but left the programmer with the more difficult
debugging problem.

Second, jobs with similar needs were batched together and run throu ghthe
compuler as a group to reduce set-up time. For instance, suppose the operator
received one FORTRAN job, one COBOL job, and another FORTRAN job. If she ran
them in that order, she would have to set up for FORTRAN (load the compiler
tapes and so on), then set up for COBOL, and then set up for FORTRAN again. If
she ran the two FORTRAN programs as a batch, however, she could set up only
once for FORTRAN, saving operator time.

But there were still problems. For example, when a job stopped, the
operator would have to notice that it had stopped (by observing the console),
determine w/ty it stopped (normal or abnormal termination), dump memory
and register (if necessary), load the appropriate device with the next job, and
restart the computer. During this transition from one job to the next, the CPU
sat idle.

To overcome this idle time, people developed automatic job sequencing;
with this technique, the first rudimentary operating systems were created.
A small program, called a resident monitor, was created to transfer control
automatically from one job to the next (Figure 23.1). The resident monitor is
alwavs in memory (or resident).

({oader

manitor job sequencing

controt card
interpreter

—

user
program
area

Figure 23.1 Memory layout for a resident monitor.

818

Chapter 23

When the computer was turned on, the resident monitor was invoked,
and it would transfer control to a program. When the program terminated, it
would return control to the resident monitor, which would then go on to the
next program. Thus, the resident monitor would automatically sequence from
one program to another and from one job to another.

But how would the resident monitor know which program to execute?
Previously, the operator had been given a short description of what programs
were to be run on what data. Control cards were introduced to provide this
information directly to the monitor. The idea is simple: In addition to the
program or data for a job, the programmer included the control cards, which
contained directives to the resident monitor indicating what program to run.
For example, a normal user program might require one of three programs to
run: the FORTRAN compiler (FTN), the assembler (ASM), or the user’s program
(RUN). We could use a separate control card for each of these:

$FTN — Execute the FORTRAN compiler.
$ASM—Execute the assembler.
$RUN— Execute the user program.

These cards tell the resident monitor which programs to run.
We can use two additional control cards to define the boundaries of each
job:

$10B—First card of a job
$END—Final card of a job

These two cards migit be useful in accounting for the machine resources used
by the programmer. Parameters can be used to define the job name, account
number to be charged, and so on. Other control cards can be defined for other
functions, such as asking the operator to load or unload a tape.

One problem with control cards is how to distinguish them from data or
program cards. The usual solution is to identify them by a special character or
pattern on the card. Several systems used the dollar-sign character (3) in the
first column to identify a control card. Others used a different code. [BM's Job
Control Language {JCL) used slash marks (/ /) in the first two columns. Figure
23.2 shows a sample card-deck setup for a simple batch system.

A resident monitor thus has several identifiable parts:

The cantrol-card interpreter is responsible for reading and carrying out
the instructions on the cards at the point of execution.

The loader is invoked by the control-card interpreter to load system
programs and application programs into memeory at intervals.

The device drivers are used by both the control-card interpreter and the
loader for the svstem’s 1/0 devices to perform 1/0. Often, the system and
application programs are linked to these same device drivers, providing
continuity in their operation, as well as saving memory space and
programming time.

231 0 e 819

Figure 23.2 Card deck for a simple batch systern,

These batch systems work fairly well. The resident monitor provides
automatic job sequencing as indicated by the control cards. When a control
card indicates that a program is to be run, the monitor loads the program
into memory and transfers control to it. When the program completes, it
transfers control back to the monitor, which reads the next control card, loads
the appropriate program, and so on. This cycle is repeated until all control
cards are interpreted for the job. Then, the monitor automatically continues
with the next job.

The switch to batch systems with automatic job sequencing was made
to improve performance. The problem, quite simply, is that humans are
considerably slower than the computer. Consequently, it is desirable to replace
human operation with operating-system software. Automatic job sequencing
eliminates the need for human set-up time and job sequencing,

As was pointed out above, however, even with this arrangement, the CPU
is often idle. The problem is the speed of the mechanical 1/0 devices, which
are mitrinsically slower than electronic devices. Even a slow CPU works in the
microsecond range, with thousands of instructions executed per second. A
fast card reader, in contrast, might read 1,200 cards per minute {or 20 cards per
second). Thus, the difference in speed between the CPU and its /0 devices may
be three orders of magnitude or more. Over time, of course, improvements in
technology resulted in faster 1/0 devices. Unfortunately, CPU speeds increased
even faster, so that the problem was not only unresolved but also exacerbated.

23.1.3 Overlapped i/0

One common solution to the 1/0 problem was to replace slow card readers
(input devices) and line printers (output devices) with magnetic-tape units.
The majority of computer systems in the late 1950s and early 1960s were batch
systems reading from card readers and writing to line printers or card punches.
Rather than have the CPU read directly from cards, however, the cards were
first copied onto a magnetic tape via a separate device. When the tape was
sufficiently full, it was taken down and carried over to the computer. When a
card was needed for input to a program, the equivalent record was read from

820 Chapter 23

': an-ling
o] — &5

card reader ling printer
(a)
card reader tape drives tape drives line printer
(b)

Figure 23.3 Operation of Y0 devices (a) online and (b) off-line.

the tape. Similarly, output was written to the tape, and the contents of the tape
were printed later. The card readers and line printers were operated off-line,
rather than by the main computer (Figure 23.3).

An obvious advantage of off-line operation was that the main computer
was no longer constrained by the speed of the card readers and line printers
but was limited only by the speed of the much faster magnetic tape units.
The technique of using magnetic tape for all 1/0 could be applied with any
similar equipment (such as card readers, card punches, plotters, paper tape,
and printers).

The real gain in off-line operation comes from the possibility of using
multiple reader-to-tape and tape-to-printer systems for one CPU. If the CPU
can process input twice as fast as the reader can read cards, then two readers
working simultaneously can produce enough tape to keep the CPU busy. There
is a disadvantage, too, however—a longer delay in getting a particular job run.
The job must first be read onto tape. Then, it must wait until enough other jobs
are read onto the tape to “fill” it. The tape must then be rewound, unloaded,
hand-carried to the CPU, and mounted on a free tape drive. This process is not
unreasonable for batch systems, of course. Many similar jobs can be batched
onto a tape before it is taken to the computer.

Although off-line preparation of jobs continued for some time, it was
quickly replaced in most systems. Disk systems became widely available and
greatly improved on off-line operation. The problem with tape systems was
that the card reader could not write onto one end of the tape while the CPu
read from the other. The entire tape had to be written before it was rewound
and read, beca:se tapes are by nature sequential-access devices. Disk systems
eliminated this problem by being random-access devices. Because the head is
moved from one area of the disk to another, a disk can switch rapidly from
the area on the disk being used by the card reader to store new cards to the
position needed by the CPU to read the “next” card.

In a disk system, cards are read directly from the card reader onto the
disk. The location of card images is recorded in a table kept by the operating
system. When a job is executed, the operating system satisfies its requests for
card-reader input by reading from the disk. Similarly, when the job requests the
printer to output a line, that line is copied into a system buffer and is written
to the disk. When the job is completed, the output is actually printed. This
form of processing is called spooling (Figure 23.4); the name is an acronym for

23.2

23.2 821

disk

4
Vo
. \\ on-kng
o —
card reader L line printer

Figure 23.4 Spoofing.

simultaneous peripheral eperation on-line. Spooling, in essence, uses the disk
as a huge buffer for reading as far ahead as possible on input devices and for
storing output files until the output devices are able to accept them.

Spooling is also used for processing data at remote sites. The CPU sends
the data via communication paths to a remote printer (or accepts an entire
input job from a remote card reader). The remote processing is done at its own
speed, with no CPU intervention. The CPU just needs to be notified when the
processing is completed, so that it can spool the next batch of data.

Spooling overlaps the I/0 of one job with the computation of other jobs.
Even in a simple system, the spooler may be reading the input of one job while
printing the output of a different job. During this time, still another job (or
other jobs) may be executed, reading its “cards™ from disk and “printing” its
output lines onto the disk.

Spooling has a direct beneficial effect on the performance of the system.
For the cost of some disk space and a few tables, the computation of one job
can overlap with the [/0 of other jobs. Thus, spooling can keep both the CPU
and the 1/0 devices working-at much higher rates. Spooling leads naturaily to
multiprogramming, which is the foundation of all modern operating systems.

The Atlas operating system {Kilburn et al. {19611, Howarth et al. [1961]) was
designed at the University of Manchester in England in the late 1950s and
early 1960s. Many of its basic features that were novel at the time have become
standard parts of modern operating systems. Device drivers were a major
part of the system. In addition, system calls were added by a set of special
instructions called extra codes.

Atlas was a batch operating system with spooling. Spooling allowed the
system to schedule jobs according to the availability of peripheral devices, such
as magnetic tape units, paper tape readers, paper tape punches, line printers,
card readers, and card punches.

822

23.3

Chapter 23

The most remarkable feature of Atlas, however, was its memory manage-
ment. Core memory was new and expensive at the time. Many computers,
like the IBM 650, used a drum for primary memory. The Atlas system used a
drum for its main memory, but it had a small amount of core memory that was
used as a cache for the drum. Demand paging was used to transfer information
between core memory and the drum autematically.

The Atlas system used a British computer with 48-bit words. Addresses
were 24 bits but were encoded in decimal, which allowed only 1 million words
to be addressed. At that time, this was an extremely large address space. The
physical memory tor Atlas was a 98-KB-word drum and 16-KB words of core.
Memory was divided into 512-word pages, providing 32 frames in physical
memory. An associative memory of 32 registers implemented the mapping
from a virtual address to a physical address.

It a page fault occurred, a page-replacement algorithm was invoked. One
memory frame was always kept empty, so that a deum transfer could start
immediately. The page-replacement algorithm attempted to predict future
memory-accessing behavior based on past behavior. A reference bit for each
frame was set whenever the frame was accessed. The reference bits were read
into memory every 1,024 instructions, and the last 32 values of these bits were
retained. This history was used to define the time since the most recent reference
(t1) and the interval between the last two references (f;). Pages were chosen for
replacement in the following order:

Any page with t; > £; + 1. Such a page is considered to be no longer in
use.

iIf t) = &, for all pages, then replace the page with the largest f; — #,.

The page-replacement algorithm assumes that programs access memory in
loops. If the time between the last two references is t;, then another reference is
expected #; time units later. If a reference does not occur (f > k), it is assumed
that the page is no longer being used, and the page is replaced. If all pages
are still in use, then the page that will not be needed for the longest time is
replaced. The time to the next reference is expected to be t, — k.

The XD5-940 operating system (Lichtenberger and Pirtle [1965]) was designed
at the University of California at Berkeley. Like the Atlas system, it used paging
for memory management. Unlike the Atlas system, it was a time-shared system.

The paging was used only for relocation; it was not used for demand
paging. The virtual memory of any user process was made up of 16-KB words,
whereas the physical memory was made up of 84-KB words. Each page was
made up of 2-KB words. The page table was kept in registers. Since physical
memory was larger than virtual memory, several user processes could be in
memory at the same time. The number of users could be increased by sharing
of pages when the pages contained read-only reentrant code. Processes were
kept on a drum and were swapped in and out of memory as necessary.

23.4

234 . 823

The XD5-940.system was constructed from a modified XDS-930. The mod-
ifications were typical of the changes made to a basic computer to allow an
operating system to be written properly. A user-monitor mode was added.
Certair: instructions, such as [/0 and halt, were defined to be privileged. An
attempt to execute a privileged instruction in user mode would trap to the
operating system.

A system-call instruction was added to the user-mode instruction set.
This instruction was used to create new resources, such as files, allowing the
operating system to manage the physical resources. Files, for example, were
allocated in 256-word blocks on the drum. A bit map was used to manage
free drum blocks. Each file had an index block with pointers to the actual data
blocks. Index blocks were chained together.

The XDS-940 system also provided system calls to allow processes to create,
start, suspend, and destroy subprocesses. A programmer could construct a
system of processes. Separate processes could share memory for communica-
tion and synchronization. Process creation defined a tree structure, where a
process is the root and its subprocesses are nodes below it in the tree. Each of
the subprocesses could, in turn, create more subprocesses.

The THE operating system (Dijkstra [1968], McKeag and Wilson [1976]) was
designed at the Technische Hogeschool at Eindhoven in the Netherlands. It
was a batch system running on a Dutch computer, the EL X8, with 32 KB of
27-bit words, The system was mainly noted for its clean design, particularly
its layer structure, and its use of a set of concurrent processes employing
semaphores for synchronization.

Unlike the XDS-040 system, however, the set of processes in the THE system
was static. The operating system itself was designed as a set of cooperating
processes. In addition, five user processes were created that served as the
active agents to compile, execute, and print user programs. When one job was
finished, the process would return to the input queue to select another job.

A priority CPU-scheduling algorithm was used. The priorities were recom-
puted every 2 seconds and were inversely proportional to the amount of CPU
time used recently (in the last 8 to 10 seconds). This scheme gave higher priority
to 1/0-bound processes and to new processes.

Memory management was limited by the lack of hardware support. How-
ever, since ihe system was limited and user programs could be written only in
Algol, a software paging scheme was used. The Algol compiler automatically
generated calls to system routines, which made sure the requested information
was in memory, swapping if necessary. The backing store was a 512-KB-word
drum. A 512-word page was used, with an LRU page-replacement strategy.

Another major concern of the THE system was deadlock control. The
banker’s algorithm was used to provide deadlock avoidance.

Closely related to the THE system is the Venus system (Liskov [1972]). The
Venus system was also a layer-structured design, using semaphores to synchro-
nize processes. The lower levels of the design were implemented in microcode,
however, providing a much faster system. The memory management was

824

23.5

Chapter 23

changed to a paged-segmented memory. The system was also designed as
a time-sharing system, rather than a batch system.

The RC 4000 system, like the THE system, was notable primarily for its design
concepts. 1t was designed for the Danish 4000 computer by Regnecentralen,
particularly by Brinch-Hansen (Brinch-Hansen [1970], Brinch-Hansen [1973]).
The objective was not to design a batch system, or a time-sharing system, or
any other specific system. Rather, the gml was to create an opera tmg—qyste
nuclcm or kernel, on which a complete operating system could be built. Thus,
the system structure was lavered, and only the lower levels—comprising the
kernel—were provided.

The kernel supported a collection of concurrent processes. A round-robin
Cru scheduler was used. Although processes could share memory, the primary
communication and synchronization mechanism was the message system
provided by the kernel. Processes could communicate with each other by
ev.han,t__,mt_, fixed-sized messages of eight words in length. All messages were
stored in buffers from a common buffer pool. When a message buffer was no
longer required, it was returned to the common pool.

A message queue was associated with each process. It contained all the
messages that had been sent to that process but had not yet been received.
Messages were removed from the queue in FIFO order. The system supported
four primitive operations, which were executed atomically:

send-message (in receiver, in message, out buffer)

wait-message (out seuder, out message, out buffer)

send-answer (out resull, in message, in buffer)

wait-answer (out result, out message, in buffer)
The last two operations allowed processes to exchange several messages at a
time.

These primitives required that a process service its message queue in

FIFO order and that it block itself while other processes were handling its
messages. To remove these restrictions, the developers provided two additionai

rcommunication primitives that allowed a process to wait for the arrival of the

next message or to answer and service its queue in any order:

wail-event (in previous-buffer, out sext-buffer, out resulf)

get-event (out buffer)

I/ devices were also treated as processes. The device drivers were code
that converted the device interrupts and registers into messages. Thus, a
process would write to a terminal by sending that terminal a message. The
device driver weuld receive the message and output the character to the
terminal. An input character would interrupt the system and transfer to

23.6

23.7

23.7 825

a device driver. The device driver would create a message from the input
character and send it to a waiting process.

The Compatible Time-Sharing System (€TSS} (Corbato et al. [1962]) was
designed at MIT as an experimental time-sharing system. It was implemented
on an IBM 7090 and eventually supported up to 32 interactive users. The
users were provided with a set of interactive commands that allowed them
to manipulate files and to compile and run programs through a terminal.

The 7090 had a 32-KB memory made up of 36-bit words. The monitor used
5-KB words, leaving 27 K8 for the users. User memory images were swapped
between memory and a fast drum. CPU scheduling employed a multilevel-
feedback-queue algorithm. The time quantum for level / was 2 i time units.
If a program did not finish its CPU burst in one time quantum, it was moved
down to the next level of the queue, giving it twice as much time. The program
at the highest level (with the shortest quantum) was run first. The initial tevet
of a program was determined by its s1ze, so that the time quantum was at least
as long as the swap time.

CTs5 was extremely successtul and was in use as late as 1972. Although
it was limited, it succeeded in demonstrating that time sharing was a con-
venient and practical mode of computing. One result of CTSS was increased
development of time-sharing systems. Another result was the development of
MULTICS.

The MULTICS operating system (Corbato and Vyssotskv [1965)], Organick [1972])
was designed at MIT as a natural extension of CTSS. CTs6 and other early
time-sharing systems were so successful that they created an immediate
desire to proceed quickly to bigger and better systems. As larger computers
became available, the designers of CTSS set out to create a time-sharing utilitv.
Computing service would be provided like etectrical power. Large computer
systems would be connected by telephone wires to terminals in offices and
homes throughout a city. The operating system would be a time-shared system
running continuously with a vast file system of shared programs and data.

MULTICS was designed by a team from MIT, GE (which later sold its
cnputer department to Honeywell), and Bell Laboratories (which dropped
out of the project in 1969). The basic GE 635 computer was modified to a
new computer system called the GE 645, mainly by the addition of paged-
segmentation memory hardware.

A virtual address was composed of an 18-bit segment number and a
16-bit word offset. The segments were then paged in 1-KB-word pages. The
second-chance page-replacement algorithm was used.

The segmented virtual address space was merged into the file system: each
segment was a file. Segments were addressed by the name of the file. The file
system itself was a muitilevel tree structure, atlowing users to create their own
subdirectory structures.

826

23.8

Chapter 23

Like CTSS, MULTICS used a muttilevel feedback queue for CPU scheduling.
Protection was accomplished through an access list associated with each file
and a set of protection rings for executing processes. The system, which was
written almost entirely in PL/1, comprised about 300,000 lines of code. It was
extended to a multiprocessor system, aillowing a CPU to be taken out of service
for maintenance while the system continued running.

The longest line of operating-system development is undoubtedly that of 1BM
computers, The early [BM computers, such as the IBM 7090 and the IBM 7094, are
prime examples of the development of common 1/0 subroutines, followed by
development of a resident monitor, privileged instructions, memory protection,
and simple batch processing. These systems were developed separately, often
by each site independently. As a result, IBM was faced with many different
computers, with different languages and different system software.

The IBM/360 was designed to alter this situation. The IBM/360 was designed
as a family of computers spanning the complete range from small business
machines to large scientific machines. Only one set of software would be
needed for these systems, which all used the same operating system: 05/360
{Mealy et al. [1966]). This arrangement was intended to reduce maintenance
problems for IBM and to allow users to move programs and applications freely
from one IBM system to another.

Unfortunately, 05/360 tried to be all things for all people. As a result, it
did none of its tasks especially well. The file system included a type field
that defined the type of each file, and different file types were defined for
fixed-length and variable-length records and for blocked and unblocked files.
Contiguous allocation was used, so the user had to guess the size of each output
file. The Job Control Language (JCL) added parameters for every possible
option, making it incomprehensible to the average user.

The memory-management routines were hampered by the architecture.
Although a base-register addressing mode was used, the program could access
and modify the base register, so that absolute addresses were generated by the
CPU. This arrangement prevented dynamic relocation; the program was bound
to physical memory atload time. Two separate versions of the operating system
were produced: OS/MFT used fixed regions and 03/MVT used variable regions.

The system was written in assembly language by thousands of program-
mers, resulting in miltions of lines of code. The operating system itself required
large amounts of memory for its code and tables. Operating-system overhead
often consumed one-half of the total CPU cycles. Over the years, new versions
were released to add new features and to fix errors. However, fixing one error
often caused another in some remote part of the system, so that the number of
known errors in the system remained fairly constant.

Virtual memory was added to 0S/360 with the change to the IBM 370
architecture. The underlying hardware provided a segmented-paged virtual
memory. New versions of OS used this hardware in different ways. 05/VS1
created one large virtual address space and ran OS/MFT in that virtual memory.
Thus, the operating system itself was paged, as well as user programs. 05/Vs2

23.9 827

Release 1 ran OS/MVT in virtual memory. Finally, O5/vS2 Release 2, which is
now called MVS, provided each user with his own virtual memory.

MVS is still basically a batch operating system. The CTS5 system was run on
an IBM 7094, but MiT decided that the address space of the 360, IBM’s successor
to the 7094, was too small for MULTICS, so they switched vendors. IBM then
decided to create its own time-sharing svstem, T55/360 (Lett and Konigsford
[1968]). Like MULTICS, T55/360 was supposed to be a large, time-shared utility.
The basic 360 architecture was modified in the model 67 to provide virtual
memory. Several sites purchased the 360/67 in anticipation of T$$/360.

TS5/360 was delayed, however, so other time-sharing systems were devel-
oped as temporary systems until TSS/360 was available. A time-sharing option
(TS0} was added to 05/360. IBM's Cambridge Scientific Center developed CMS
as a single-user system and CP/67 to provide a virtual machine to run it on
{Meyer and Seawright [1970], Parmelee et al. [1972]).

When TSS/360 was eventually delivered, it was a failure. It was too large
and too slow. As a result, no site would switch from its temporary system to
T55/360. Today, time sharing on [BM systems is largely provided either by TSO
under MVS or by CMS under CP/67 (renamed VM),

Both TS8/360 and MULTICS did not achieve commercial success. What went
wrong with these systems? Part of the problem was that these advanced
systems were too large and too complex to be understood. Another problem
was the assumption that computing power would be available from a large,
remote computer. It now appears that most computing will be done by small
individual machines-—personal computers—not by large, remote, time-shared
systems that iry to be all things to all users.

23.9 -

The Mach operating system traces its ancestry to the Accent operating system
developed at Camegie Mellon University (CMU) (Rashid and Robertson [1981]).
Mach’s communication system and philosophy are derived from Accent, but
many other significant portions of the system (for example, the virtual memory
system, task and thread management) were developed from scratch (Rashid
[1986], Tevanian et al. [1989], and Accetta et al. [1986]). The Mach scheduler was
described in detail by Tevanian et al. [1987a] and Black [1990]. An early version
of the Mach shared memory and memory-mapping system was presented by
Tevanian et al. [1987b].

The Mach operating system was designed with the following three critical
goals in mind:

Emulate 4.3B5D UNIX so that the executable files from a UNIX system can
run correctly under Mach,

Be a modern operating system that supports many memory models, as
well as parallel and distributed computing.

Have a kernel that is simpler and easier to modify than is 4.3B5D. .

Mach’s development followed an evolutionary path from BSD UNIX sys-
tems. Mach code was initially developed inside the 4.2BSD kernel, with BSD

825

Chapter 23

kernel components replaced by Mach components as the Mach components
were completed. The BSL components were updated to 43B5D when that
becamne available. Bv 1986, the virtual memory and communication subsys-
temns were running on the DEC VAX computer family, inctuding multiprocessor
versions of the VAX. Versions for the 1BM RT/PC and for SUN 3 workstations
followed shortly. Then, 1987 saw the completion of the Encore Multimax and
Sequent Balance multiprocessor versions, including task and thread support,
as well as the first official releases of the systemn, Release (and Release 1.

Through Release 2, Mach provided compatibility with the corresponding
BSD systems by including much of BSIY's code in the kernel. The new features
and capabilities of Mach made the kernels in these releases larger than the
corresponding BSD kernels. Mach 3 moved the BSD code outside of the kernel,
leaving a much smaller microkernel. This system implements only basic
Mach features in the kernel; alt UNIX-specific code has been evicted to run
in user-mode servers. Excluding UNIX-specific code from the kernel allows
the replacement of BSD with another operating system or the simultaneous
execution of multiple operating-system interfaces on top of the mizrokernel. In
addition to BSD, user-mode impiementations have been developed for DOS, the
Macintosh operating system, and OSF/1. This approach has similarities to the
virtual machine concept, but here the virtual machine is defined by software
(the Mach kernel interface), rather than by hardware. With Release 3.0, Mach
became available on awide variety of systems, including single- processor SUN,
Intel, 1BM, and DEC machines and multiprocessor DEC, Sequent, and Encore
systems.

Mach was propeiled into the forefront of industry attention when the Open
Sofiware Foundation (0SF) announced in 1989 that it would use Mach 2.5 as
the basis for its new operating svstem, 0OSF/1. The initial release of Q$F/1
occurred a vear later, and this sysiem competed with UNIX System V, Release
4, the operating system of choice at that time among UNIX International (U1)
members. OSF members included key technological companies such as 1BM,
DEC, and HI. OSF has since changed its direction, and only DEC UNIX is based
on the Mach kernel.

Mach 2.5 is also the basis for the operating system on the NeXT workstation,
the brainchild of Steve Jobs, of Apple Computer fame.

Unlike UNIX, which was developed without regard for multiprocessing,
Mach incorporates multiprocessing support throughout. Its multiprocessing
support is also exceedingly flexible, ranging from shared-memory systems to
systems with no memory shared between processors. Mach uses lightweight
processes, in the form of multiple threads of execution within one task (or
address space), to support multiprocessing and parallel computation. Its
extensive use of messages as the only communication methed ensures that
protection mechanisms are complete and efficient. By integrating messages
with the virtual memory system, Mach also ensures that messages can be
handled efficiently. Finally, by having the virtual memory system use messages
to communicate with the daemons managing the backm;., store, Mach provides
great flexibility in the design and implementation of these memory-object-
managing tasks. By providing low-level, or primitive, svstem calls from which
more complex functions can be built, Mach reduces the size of the kernel
while permitting operating-system emulation at the user level, much like 1BA s
virtual-machine svstems,

829

Previous editions of Operating System Concepts included an entire chapter
on Mach. This chapter, as it appeared in the fourth edition, is available on the
Web (http:// www.os-book.com).

23.10

There are, of course, other operating systems, and most of them have inter-
esting propertics. The MCP operating system for the Burroughs computer
family (McKeag and Wilson [1976]) was the first to be written in a system-
programming language. It supported segmentation and multiple CPUs. The
SCOPE operating system for the CDC 6600 (McKeay, and Wilson [1976]) was
also a multi-CPU system. The coordination and synchronization of the multiple
processes were surprisingly weli designed. Tenex (Bobrow et al. [1972]) was
an early demand-paging system for the PDP-10 that has had a great influence
on subsequent time-sharing systerns, such as TOPS-20 for the DEC-20. The VMS
operating system for the VAX is based on the RSX operating svstem for the
PDP-1. CP/M was the most common operating system for 8-bit microcomputer
systems, few of which exist today; M5-1DOS is the most common system for 16-
bit microcomputers. Graphical user interfaces (Gulis) have become popular to
make computers easier to use; the Macintosh Operating System and Microsoft
Windows are the two leaders in this area.

23.1 Discuss what considerations the computer operator took into account
in deciding in the sequences in which piograms would be run on early
computer systems that were manually operated.

23.2 What optimizations were used to minimize the discrepancy between
CPU and 1/Cr speeds on early computer systerns?

23.3 Consider the page replacement algorithm used by Atlas. In what ways
is it different from the clock algorithm discussed in Section 9.4.5.27

234 Consider the multilevel feedback queue used by €TS8 and MULTICS.
Suppose a program cunsistent]}' uses seven time units every time it
is scheduled before it performs an 1/0 operation and blocks. How
many time units are allocated to this program when it is scheduled for
execution at different points in time?

23.5 Whatare the implications of supporting BSI> functionality in user-mode
servers within the Mach operating svstem?

